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1  INTRODUCTION 
 
The Preliminary design of an underground structure such 
as tunnels and shafts requires an analytical solution to 
predict the stress and strain state. An ealsto-plastic 
solution makes it possible to determine the stresses, the 
displacements, and the radius of the plastic zone around 
the tunnel. For the assumption of the isotropy in field 
stress, circular shape of tunnel, homogeneity in rock 
mass, and axi-symmetrical plane strain condition,  several 
approaches have been developed over the past 30 years, 
in which either Mohr-Coulomb (M-C) or Hoek-Brown 
(H-B) yield criterion was used. 

Considering different models of rock behaviour, such 
as the elastic-perfectly plastic, elastic-brittle-plastic and 
elastic-strain softening, with different yield criteria M-C 
and H-B, the complexity of the solution differs.  

Most of the straightforward solutions (Ladanyi 1974; 
Florence & Schwer 1978; John et al.  1984; Senseny et al. 
1989; Indraratna & Kaiser 1990; Pan & Chen 1990; Panet 
1993; Duncan Fama 1993) used the linear Mohr-
Coulomb failure criterion whereas more complicated 
solutions (Hoek & Brown 1980, Brown et al.  1983; 
Ogawa & Lo 1987; Deournay & John 1988; Wang 1996; 
Cundall et al.  2003;  Carranza-Torres & Fairhurst 1999; 
Carranza-Torres 2004; Sharan 2003, 2005,2007; Park & 

Kim 2006; Sofianos & Nomikos,2006; Park et al. 2008) 
were based on non-linear Hoek-Brown yield criterion. 

Up to date, the most difficult part of deriving the 
equations was to obtain the plastic strain in plastic zone 
that necessitate many mathematical simplifications and 
treatments.  More recently, researches have tried to 
develop an elasto-plastic solution that satisfies the latest 
version of H-B yield criterion (Hoek et al. 2002) in 
which 5.0≥a . Among them, Carranza-Torres (Carranza-
Torres 2004) proposed a comprehensive closed-form 
solution using a transformation technique that made the 
solution more complex. Recently, Sharan (2007) pointed 
out the errors in the solutions by Brown et al. (1983) and 
Wang (1996) and developed also a closed form solution 
for 5.0≥a  . However, the author has found this solution 
to be incorrect. 

The objective of this paper is to develop a numerical-
aided elasto-plastic solution for the analysis of the stress 
and strain state around a circular tunnel in an elastic-
perfectly plastic or elastic-brittle-plastic rock media 
obeying non-linear generalized Hoek-Brown yield 
criterion with 5.0≥a . The proposed solution utilizes 
simple mathematical treatments to alleviate the 
complexity of the problem. The available mathematical 
softwares namely Matematica (Matematica, Wolfram 
Research 2004) and Maple (Maple Inc 2003) are used to 
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solve the stress equilibrium and strain compatibility 
equations. The resulting integration in product of the 
strain compatibility equation is evaluated by so-called 
Sympson’s rule. The radial stress at elastic-plastic 
boundary around the tunnel is evaluated numerically 
using the well-known Newton-Raphson Method. All 
formulations of the solution can be implemented by a 
programmable calculator for quick usage. 

 
2 DEFINITION OF THE PROBLEM AND THE 
MAIN ASSUMPTIONS 
 
The problem is defined in Figure 1. Consider a deep 
circular tunnel being excavated in an infinite medium 
subjected to isotropic hydrostatic initial stress, Po (K=1). 
The excavation removes the boundary stresses around the 
circumference of the tunnel, and the process may be 
simulated by gradually reducing the internal (support) 
pressure, Pi. As Pi is reduced, a plastic zone is formed 
when the material is overstressed, and the radial 
displacement, ur, occurs. It is required to compute the 
stresses and displacements around the tunnel, when plane 
strain condition along the axis of the tunnel is reached. 
The assumptions of homogeneity, isotropy, time 
independency, and linear elasticity prior to failure of the 
rock mass are made. The rock mass strength is assumed 
to follow the non-linear H-B yield criterion (Hoek et 
al.2002). Elastic-brittle-plastic or elastic-perfectly plastic 
material models with a constant rate of dilation, followed 
by a non-associated flow rule of plasticity are simulated. 
The deformation pattern near the tunnel is properly 
described by a plane strain condition. A section of tunnel 
far from the face is considered so that the 3-D effects at 
the tunnel face are eliminated. Consequently, the 
proposed solution can be applied to predict the ultimate 
tunnel convergence, at least two tunnel diameters behind 
the face.  
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Figure 1: Definition of the model. 

 
3 SOLUTION METHOD 

 
3.1 Stress analysis  
 
For a solution of the elasto-plastic problem, the equation 
of equilibrium, the compatibility condition, a stress-strain 

relationship in the elastic field, a yield criterion, a plastic 
potential, and a flow rule are required. The stresses and 
displacements in the elastic region can be easily 
determined by observing the continuity of radial stresses 
and displacements at the elastic-plastic interface. The 
solution within the plastic region will depend on the 
assumption of (a) the yield criterion, (b) the use of an 
associated or a non-associated flow rule, and (c) the 
dilatancy angle ψ. 

Yield initiation is assumed to occur following a non-
linear Hoek-Brown failure criterion. In this elasto-plastic 
solution, the latest version of the Hoek-Brown yield 
criterion (introduced in 2002) has been chosen: 
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The coefficients mb, s and a in Equation 1 are semi-

empirical parameters. In practice, these parameters are 
associated with the Geological Strength Index (GSI), 
which characterizes the rock mass (Hoek, 1994; Hoek & 
Brown, 1997). This index lies in a range of 5-85 and can 
be quantified from available qualitative or quantitative 
charts based on the degree of jointing of the rock 
structure and the condition of the discontinuities. The 
constants mb, s and a of Equation 1 are in turn obtained 
by GSI (Geological Strength Index) (Hoek et al., 2002): 
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In Equations 2 and 3, D is a factor that depends on the 

degree of disturbance to which the rock has been 
subjected due to blast damage and stress relaxation. This 
factor varies between 0 and 1 (Hoek et al., 2002). The 
Hoek-Brown yield condition for post-peak (residual) 
strength parameters, used for the yielded zone around the 
excavation can be rewritten as: 
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where σ’ci is the residual strength of the intact rock, m’b, 
s’ and a’ are residual strength parameters of Hoek-Brown 
failure criterion. As it has been proved that the extension 
of the broken zone relies on the residual value of the 
intact rock strength (Hoek & Brown, 1980; Brown et al., 
1983; Indraratna & Kaiser, 1990a; Cundall et al., 2003; 
Carranza-Torres, 2004), so the effect of the compressive 
strength of the rock material should be included in the 
form of the residual value as it loses its initial value due 
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to stress relief or an increase in the strain. A stress 
reduction scale should, therefore, be considered as: 

circi S σσ .=′              (6)
  
where Sr refers to the strength loss parameter that 
quantifies the jump in strength from the intact condition 
to the residual condition or a measure of the degree of 
loss in strength that occurs immediately after the peak 
strength is reached. The parameter Sr characterizes the 
brittleness of the rock material: ductile, softening, or 
brittle. By definition, Sr will fall within the range 

10 ≤≤ rS where Sr= 1 implies no loss in strength and the 
rock material is ductile, or perfectly plastic. On the other 
hand, if Sr=0, the rock is brittle (elastic-perfectly brittle 
plastic) with the minimum possible value for the residual 
strength. 

The combination of the stress equilibrium equation 
and Hoek-Brown failure criterion (Equation 5) results in 
a non-linear differential equation for the determination of 
the stress in the plastic (broken) zone around the tunnel: 
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The solution of the above differential equation 

isobtained, taking into account the boundary condition (at 
r=ri , σr =0): 
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Continuity of radial stress through the whole rock 

medium is assumed for the determination of the plastic 
zone radius. The radial stress at the elastic-plastic 
interface can be considered as a fictitious internal 
pressure for the outer elastic zone. In the pure elastic 
zone, the stress distributions are determined using so-
called Lame’s solution. Hence, the following non-linear 
equation must be solved to determine the plastic zone 
radius. This approach has already been discussed by 
Brown et al. (1983), Wang (1996), Osgoui (2007), and 
Sharan (2008). 
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An exact solution is only possible when 5.0=a  as 

determined by Brown et al. (1983), Sharan (2003, 2005), 
Park & Kim (2006), and Park et al. (2008):  
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The negative sign in the above equation is acceptable 

and after abbreviating: 
cioexactre MP σσ −=,                                            (11a)            

where: 
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On the other hand, a numerical technique; namely, the 

Newton-Raphson method (Press et al.2007), can be 
applied to approximate the exact solution of Equation 9 
(Osgoui, 2006). If solved for 0≥a , reNσ is numerically 
calculated: 
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By equating the radial stresses at the elastic-plastic 
interface, determined from both the elastic and plastic 
sides, the plastic zone radius re can numerically be 
determined by assuming continuity of radial stress at the 
elastic-plastic boundary. It is also assumed that the field 
boundaries are far enough from the tunnel such that their 
influence on the solution for re is negligible. 

Equating σr of Equation 8a (for σre at r=re) and reNσ of 
Equation 12, the normalized plastic zone radius can be 
derived as follows: 
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3.2 Strain analysis  

 
Under the axi-symmetric plane strain condition, the 
strains and the displacements are expressed as 
(Timoshenko & Goodier, 1970): 
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dr
dur

r =ε ,
r

ur=θε , 0=zε          (15)

  
where the subscripts r, θ, and z denote the radial, 
tangential, and longitudinal (axial) directions, 
respectively.  
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The compatibility condition is given by (Timoshenko & 
Goodier, 1970): 
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Strains in elastic zone 
 
Hooke’s law is applied to determine the radial and 
tangential strains in the elastic region surrounding the 
plastic zone for a plane strain condition (Timoshenko & 
Goodier, 1970): 
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where the 81 components Cijkl of the fourth-rank tensor C 
are material constants (stiffness matrix). 

Substituting stresses in elastic zone, obtained by 
Lame’s solution, into Equation 17 provides the strain 
field for plane strain condition: 
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Strains in plastic zone 
 
For small deformation and infinitesimal strains, the total 
strains in the plastic zone are the sum of the elastic and 
plastic components: 

pet εεε +=          (19a) 
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where the superscripts e and p denote the elastic and 
plastic components, respectively. Hooke’s law and flow 
rule have been applied to calculate the elastic and plastic 
strains, respectively. The elastic strains in the plastic zone 
are determined by substituting stresses in plastic zone 
into Hook’s constitutive laws.  

The plastic strains in the plastic zone are, instead, 
governed by an appropriate flow rule postulated for the 
yielding behaviour. The flow rule of plasticity relating 
the plastic strain increment pε&  to the plastic potential Q 
is given by (Hill, 1950; Brown, 1986): 
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Since the extent of yielding depends on the dilation 

characteristics of the failed rock, the flow rule must adopt 
the influence of dilation. In the present solution, a linear 
Mohr-Coulomb plastic potential has been adopted. Under 
a plane strain condition, the flow rule can be written as: 
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dilatancy angle of the rock. 
Having been determined the elastic strains in the 

plastic zone, the combination of strain compatibility 
(Equation 16) with the flow rule (Equation 21) gives rise 
to a solution for the strain field in the form of a non-
linear differential equation: 
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The tangential strain at the elastic-plastic boundary (at 

r = re) produced by the reduction of σr from its original 
value, Po, to σre is (Brown et al. 1983; Sharan 2003, 2007; 
Park &Kim 2006): 
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Hence, the solution of Equation 22a is obtained 

using software Matematica (Wolfram Research 
2004) or Maple (Maple Inc 2003) as: 
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As can be observed from Equation 23, an integral 

function has been introduced into the result of the 
differential equation. The complete solution can be 
obtained provided that the integral on the right side of 
Equation 23 is evaluated numerically. Sympson’s rule is 
applied to approximately solve the integration (Waner & 
Costenoble, 2006). 

The radial displacement field can fainally be evaluated 
from any of the expressions of Equation 15, neglecting 
elastic strain due to its very small magnitude compared to 
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the plastic strain ( pe
θθ εε << ) and substituting r=ri. 

Therefore, the radial inward displacement of the tunnel 
surface can simply be determined as:                      
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4 PRACTICAL APPLICATION OF THE 
PROPOSED MODEL 
                                                                                           
The following example, posed by Hoek & Brown (1980) 
and Carranza- Torres (2004), are intended to illustrate the 
practical application of the proposed solution and to 
compare the results of proposed model with those of 
Carranza-Torres’s solution. The geomechanical 
parameters of the rock mass used are given in Table 1. 

A comparison between the proposed solution and that 
which developed by Carranza-Torres (2004), in terms of 
stresses and displacements around the tunnel, has been 
made as demonstrated in Figures 2 and 3. As can be 
observed, a good agreement between both results is 
obtained. In spite of equality in radius of plastic zone 
(5.09m) for both solutions, the radial displacement at 
tunnel boundary by Carranza-Torres’ solution are slightly 
higher that that of proposed elasto-plastic model. This 
can be attributed to the different ways in solving the 
strain compatibility equation resulting different values. 
The radial displacement at tunnel boundary are calculated  
30.7 mm for proposed model  and 34.1 mm for Carranza-
Torres’ solution.  

The proposed elasto-plastic solution makes it possible 
to depict the Ground Reaction Curve (GRC), which is 
main component of the Convergence-Confinement 
Method in tunnel design. The GRC for geomechanical 
parameters given in Table 1 is presented in Figure 4. 
 

Table 1. Input parameters used in the practical example 
Geomechanical parameters  value 

Tunnel radius ri(m) 2 
Far field stress Po (MPa) 15 

Deformation modulus E (GPa) 5.7 
Poisson’s ratio ν (-) 0.3 

mb 1.7 
s 3.9E-3 
a 0.5 

mb’ 0.85 
s’ 1.9E-3 

Hoek –
Brown 

rock mass 
strength 
constant 

a’ 0.5 
σci (MPa) 30 
σci’ (MPa) 27 

Dilatancy angle ψ (°) 0 (non-associated) 
Dilatancy Paramerer Nψ 1 
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Figure 2: Distribution of the tangential and radial stresses 
calculated by proposed and Carranza-Torres’ solutions. 
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Figure 3: Displacement field obtained from both proposed and 
Carranza-Torres’ solutions. 
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Figure 4: Ground Reaction Curve (GRC) based on the 

proposed elastic- plastic model 
 

5 CONCLUSIONS 
 
A numerical-based elasto plastic solution for an axi-
symmetrical circular tunnel in an isotropic and 
homogeneous medium that obeys generalized Hoek-
Brown failure criterion was developed. Various 
numerical techniques have been adopted in order to solve 
the equilibrium and compatibility equations apart from 
taking advantage of available mathematical programs. 
The essential aim of proposed solution is intended to 
predict the stress and strain states and extension of 
yielding around tunnel subjected to a hydrostatic stress 
field. Furthermore, the proposed solution allows the 
representation of the Ground Reaction Curve (GRC), 
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which is considered as a practical means in tunnel 
support design. The proposed solution is also capable of 
predicting the ultimate tunnel convergence (at least two 
tunnel diameters behind the face), where three 
dimensional face effect are ignored. The practical 
application of the proposed solution was presented using 
a real example. A comparison between the results of the 
proposed solution and those of Carranza-Torres has been 
carried out and a good agreement was acquired. The 
proposed solution provides a practical means to quickly 
evaluate the deformational behaviour of a tunnel. All 
calculation steps can simply be implemented by using a 
programmable calculator or spread sheet. 
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NOMENCLATURE 
GSI = Geological Strength Index 
a= strength constant of Hoek-Brown failure criterion 
a′= residual strength constant of Hoek-Brown failure criterion 
c = cohesion of rock mass 
D = disturbance factor of Hoek-Brown failure criterion 
E = Young’s (elasticity) modulus 
G = shear modulus 
k =stress ratio 

im = strength constant of Hoek-Brown failure criterion for intact rock 

bm = strength constant of Hoek-Brown failure criterion 

bm′ = residual strength constant of Hoek-Brown failure criterion 
*

bm = equivalent strength constant of Hoek-Brown failure criterion 

ψN = dilation coefficient 

iP = fictitious support pressure 

oP = in-situ stress 

Q = plastic potential 
r = distance from tunnel center to point of interest 

er = radius of plastic (broken, yielding) zone 

ir = tunnel radius 

rS =post-peak strength reduction factor 
s  = strength constant of Hoek-Brown failure criterion  
s′= residual strength constant of Hoek-Brown failure criterion 

*s = equivalent strength constant of Hoek-Brown failure criterion 

ru = radial displacement 

riu = displacement at tunnel surface 

zu = longitudinal displacement  
γ = rock mass unit weight 

θγ r =shear strain in axi-symmetric problem 

1ε = maximum principal strain 

3ε =minimum principal strain 

rε = radial strain 

θε =tangential strain 

zε =longitudinal strain 
eε =elastic strain 
pε =plastic strain 
t
θε = total tangential strain 
e
θε = elastic tangential strain 
p
θε = plastic tangential strain 
e
rε = elastic radial strain 

p
rε = plastic radial strain 
t
rε = total radial strain 
pε& = incremental plastic strain in flow rule 

fλ = non-negative constant of proportionality in flow rule 

ν = Poisson’s ratio 
σ = yield function 

1σ = maximum principal stress 

3σ = minimum principal stress 

ciσ = uniaxial compressive strength of intact rock 

ciσ ′ = residual compressive strength of intact rock 

rσ = radial stress 

θσ = tangential stress 

reσ = radial stress at elastic-plastic interface 

exactre,σ = exact solution of radial stress at elastic-plastic boundary 

reNσ  = approximate (numerical) solution of radial stress at elastic-
plastic boundary 

eθσ = tangential stress at elastic-plastic interface 

θτ r =shear stress in axi-symmetric problem 

φ = internal friction angle of rock 
ψ = dilatancy angle of rock 
 
Subscripts 

r = radial 
t = tangential  
 

Superscripts 
e = elastic 
p =plastic 
t  = total 
. = increment 

 
 


