
 
 
 
 
 
 
 
 

POLITECNICO DI TORINO 
I Facolta di Ingegneria 

Master Universitario di II Livello 
 

 

 

 

 

TESI DI LAUREA 
 

 

 

 

 



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 ii

 

GROUND REACTION CURVE OF REINFORCED TUNNEL USING A NEW 
ELASTO-PLASTIC MODEL 

 
 

 

 

A  POST GRADUATE THESIS SUBMITTED TO 

THE LAND, ENVIRONMENT AND GEO-ENGINEERING DEPARTMENT 

OF 

THE TECHNICAL UNIVERSITY OF TURIN 

( Politecnico di Torino) 

 

 

 

 

 
 

 

 

Torino- Italia 

NOVEMBER 2006 



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 iii

 

ABSTRACT 
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PLASTIC MODEL 
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Academic Tutor: Prof. Ing. Pierpaolo Oreste   

Company Tutor: Prof. Ing. Daniele Peila 

 

November 2006, 79 Pages 

Incredible increase in applications of NATM and open-mode TBM tunnelling; 
especially in great depth and poor quality rock mass entails maintaining rock mass 
behind and ahead of the tunnel face. Rock reinforcing techniques has been found to 
be one of the most practical means to stabilize the tunnel by improving rock mass. 
Accompanied with injection, grouted rock bolting can be considered as a ground 
improvement option, whereby the shear strength of the rock mass can be raised to 
such an extent that a considerable decrease in plastic zone and convergence of 
tunnel are achieved. Grouted rock bolting is a means capable of modifying the 
convergence-confinement curve and modifying the value of the radial displacement 
at the moment of the installing the final lining. Hence, this Post-Graduate thesis is 
intended to provide an alternative solution to investigate the effect of the radial 
passive rock bolting on mechanical behaviour of rock mass around the tunnel.  
 
This theoretical study presents a rigorous, elasto-plastic solution for the axi-
symmetrical problem of an unsupported circular tunnel and adopts a proper 
interaction mechanism between the ground and the grouted bolts in generalized 
Hoek & Brown material. The essential aim of this solution is intended to predict 
the stresses and displacements fields and extent of plastic zone around a deep 
circular tunnel subject to a hydrostatic stress field. In this analysis the rock mass 
obeys the latest Hoek & Brown yield criterion (version 2002) and a non-associated 
flow rule is used. For the elastic–brittle–plastic analysis of circular openings in an 
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infinite Hoek–Brown medium, the existing analytical solutions were found to be 
very complex and none of them has been developed based on latest Hoek & Brown 
yields criterion. Although most of the existing elasto-plastic solutions for tunnel 
problems in Hoek & Brown media consider an intact rock (i.e., a = 0.5), the 
proposed approach supposes 5.0≥a for rock mass. In addition, this solution is 
based on the assumption that after the intact strength of the rock is exceeded, the 
material loses its strength, as dictated by a ‘strength loss’ parameter (S). The 
solution allows a representation of the Ground Reaction Curve for tunnels, which is 
used in convergence-confinement method. The proposed model is not valid if a 
pronounced discontinuity intersects the opening or when anisotropic conditions 
prevails but it assumes that the joint system present in the rock mass has no 
preferred orientation so that the medium can be considered to behave as an 
isotropic continuum. Illustrative applications of the derived elasto-plastic solutions 
are also described and the results are compared with those obtained with numerical 
techniques. The present elasto-plastic solution was validated by using the finite 
difference method in the form of both quarter and axi-symmetric model. The 
proposed analytical solution is capable of predicting the ultimate tunnel 
convergence (at least two tunnel diameters behind the face), where three-
dimensional face effects are ignored. An axi-symmetrical numerical modelling has 
proved the ability of the analytical model in this respect. It is assumed that the 
excavated tunnel face is immediately supported by fully grouted bolts, such that the 
time-dependent behaviour and loosening can be neglected.  
 
In case of reinforced tunnel by grouted bolts, the proposed model provides an 
alternative method based on convergence control approach. It considers the 
influence of bolt/ground interaction, tunnel geometry and the pattern of bolts on 
plastic zone and the tunnel convergence. The shear stress distribution along the 
fully grouted bolts was chosen (semi-empirical) to satisfy equilibrium of the bolt 
relative to the surrounding ground. The concept of an equivalent plastic zone was 
introduced to describe the extent of yielding around a circular tunnel, reinforced 
with fully grouted bolts. Three stages (categories) of yield propagation have been 
defined and analyzed with respect to the relative location of the plastic zone 
boundary in contrast to the neutral point of zero shear stress on the bolt. A friction 
factor, λ, has been introduced as a characteristic parameter for the bolt-ground 
composite interaction. The effect of bolt density parameter (β), which reflects the 
relative density of bolts with respect to the tunnel perimeter and takes into 
consideration the shear stresses opposing the rock mass displacements near the 
tunnel wall, on strength parameters of rock mass and the extent of plastic zone 
reveals the role of bolt spacing and bolt / grout frictional interaction in design, 
which in turn provides a means of selecting an optimum reinforcement pattern. At 
the end, the Ground Reaction Curve in the presence of rock bolting based on the 
proposed elasto-plastic solution will readily obtained. 
 

Keywords: Elasto-plastic solution, Reinforcement design, Grouted bolt, Ground 
Reaction Curve, Tunnelling. 
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NOMENCLATURE 

ir = tunnel radius 

r = distance from tunnel center to point of interest 

er = radius of plastic (broken, yielding) zone 

*
er = radius of Equivalent Plastic Zone (EPZ) 

oP = far field stress 

iP = support pressure 

rσ = radial stress 

θσ = tangential stress 

reσ = radial stress at elastic-plastic interface 

1σ = maximum principal stress 

3σ = minimum principal stress 

ciσ = uniaxial compressive strength of intact rock 

ciσ ′ = residual compressive strength of intact rock 

S= post-peak strength reduction factor 

bC = bolt capacity 

RMR = Rock Mass Rating of Bieniawski 

Q = Rock Quality Index of Barton 

GSI = Geological Strength Index 

D = disturbance factor 

bm = strength constant of Hoek & Brown Failure criterion 

s  = strength constant of Hoek & Brown Failure criterion 

a = strength constant of Hoek & Brown Failure criterion 

bm′ = residual strength constant of Hoek & Brown Failure criterion 

s′= residual strength constant of Hoek & Brown Failure criterion 

a′= residual strength constant of Hoek & Brown Failure criterion 
*

bm = equivalent strength constant of Hoek & Brown Failure criterion 

*
ciσ = equivalent strength of intact rock 
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*s = equivalent strength constant of Hoek & Brown Failure criterion 

c = cohesion of rock mass 
*c = equivalent cohesion of rock mass 

ψ = dilatancy angle of rock 

φ = friction angle of rock 

ψN = dilation coefficient 

ν = poisson’s ratio 

E = Young’s modulus 

G = shear modulud 

K = bulk modulus 
e
rε = elastic radial strain increment 

p
rε = plastic radial strain increment 

t
rε = total radial strain 

e
θε = elastic tangential strain increment 

p
θε = plastic tangential strain increment 

t
θε = total tangential strain 

bL = bolt length 

d = bolt diameter 

zτ = shear stress distribution along a grouted bolt 

zσ = axial stress distribution along the bolt 

TS = transversal (circumferential) bolt spacing  

LS = longitudinal bolt spacing 

ρ = radius of the neutral point of the bolt 

λ = friction factor for bolt/ grout interface 

β = bolt density parameter 

riu = displacement (convergence) of unsupported tunnel 

*
riu = displacement (convergence) of reinforced tunnel 

riri uu* = normalized convergence ratio 

eu =elastic tunnel displacement (convergence) 

BE = bolt effectiveness 
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INTRODUCTION 

These days, the applicability of the grouted rock bolts has been successfully 
put into practice in conventional tunnelling. Most of tunnelling methods such as 
New Austrian Tunnelling Method (NATM) adopt a practical way to combine 
grouted bolts with steel sets, shotcrete and weld-mesh to provide a most efficient 
and economical support system that can be installed soon after excavation. 
However, the use of the grouted rock-bolts has also been attracted plausible 
acceptance in mechanized tunnelling. Presently, transversely and longitudinally 
installed grouted bolts in open-type TBMs and shielded-TBMs have being broadly 
practiced.  

The analytical solution presented in this thesis constitutes an extension of 
the application of elasto-plasticity to the design of grouted rock bolts. It provides 
an alternative method based on a convergence control approach. The proposed 
analytical model considers the influence of bolt/ground interaction, opening 
geometry and the pattern of bolts on yielding zone and the tunnel convergence. The 
ground reaction curve of unsupported and reinforced tunnel can be ultimately 
depicted to find out the how much the bolting action decreases and controls the 
tunnel convergence. 

The thesis has been organized in two main chapters:  

Chapter 1 deals with the development of a rigorous, elasto-plastic solution 
for the axi-symmetrical problem of an unsupported circular tunnel in generalized 
Hoek & Brown material (Version 2002). The stresses, displacements, and yielding 
(plastic) zone around the tunnel are determined based on new mathematical 
formulations. In addition, the validity of the proposed elasto-plastic model has been 
verified by numerical modelling as outlined in this chapter. 

The Equivalent Strength Parameter concept in combination with elasto-
plastic solution is a framework in the reinforced tunnel analysis as will be 
discussed in the Chapter 2. The proposed analytical solution provides a practical 
means to design of the grouted bolts based on convergence control approach. It 
considers the influence of bolt/ground interaction, tunnel geometry and the pattern 
of bolts on plastic zone and the tunnel convergence. The introduction of the 
equivalent plastic zone associated with bolted tunnel is explained and examined in 
terms of the different magnitude of bolt densities and lengths.  
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CHAPTER 1 

1 DEVELOPMENT OF A NEW ANALYTICAL ELASTO-
PLASTIC SOLUTION FOR UNSUPPORTED TUNNEL 

 

1.1 Introduction 

An ealsto-plastic solution makes it possible to determine the stresses, the 
displacements, and the radius of the plastic zone around the tunnel. For the 
assumption of the isotropy in field stress, circular shape of tunnel, homogeneity in 
rock mass, and axi-symmetrical plane strain condition,  several approaches have 
been developed over the past 30 years ( Ladanyi 1974, Florence & Schwer 1978, 
Hoek & Brown 1980, Brown et al.  1983,  John et al.  1984, Deournay & John 
1988, Senseny et al. 1989, Indraratna & Kaiser 1990 , Pan & Chen 1990, Panet 
1993, Duncan Fama 1993, Cundall et al.  2003,Wang  1996 , Ogawa & Lo 1987,  
Carranza-Torres & Fairhurst 1999, Carranza-Torres 2004, Sharan 2003, 2005, Park 
& Kim 2006). 

The assumption of homogeneity, isotropy and linear elasticity before 
yielding occurs are made to simplify the analysis. The application of Airy’s stress 
functions and Hooke’s law to determine the stress and strain fields constitutes the 
fundamentals of the elastic theory (Timoshenko & Goodier, 1970). Since tunnels 
are much longer than their diameter, it is reasonable to assume that the plane strain 
condition (longitudinal strain is neglected) prevails ultimately. The conditions at 
the face differ significantly and, hence, three dimensional effects should be 
considered. For the following, it is assumed that this transition does not affect the 
final bolt behaviour. 

The extent of yielding (plastic zone radius) is dependent on the material 
properties of the rock mass, the in-situ field stress and the tunnel radius (tunnel 
span). Yielding may be followed by rupture of the wall if uncontrollable 
deformations occur in weak ground. It is the objective of radial rock-bolting to 
minimize large displacements in order to maintain a coherent load bearing ring 
around the tunnel. The installation of bolts effectively improves the apparent 
material properties of the rock mass thereby reducing strains and displacements. 

The analysis presented in this chapter is a rigorous elasto-plastic solution to 
assess the stresses and displacements of an unsupported tunnel and to investigate 
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the influence of fully grouted rock-bolts on the rock mass behaviour around the 
tunnel. The following major assumptions have been made in this analysis: 

 

I. Deep circular tunnel in hydrostatic stress fields (k=1) 

II. Homogeneous, isotropic material with time-independent properties 

III. Elastic-brittle-plastic strength model (Figure 1-4) with non-linear 
Hoek & Brown yield criterion (version 2002, Hoek et al. 2002). 
Plastic deformations follow a flow rule with constant rate of dilation 

IV. Deformation pattern near the tunnel is properly described by plane 
strain condition. Three dimensional effects at tunnel face are 
neglected. 

V. Shear stress distribution along the fully grouted bolts is assumed by 
the model illustrated in Figure 2-1. The influence of the relatively 
thin grout annulus on rock mass deformation has been ignored. 

VI. Axi-symmetric bolt pattern around the excavation consists of 
identical bolts with equal spacing along the tunnel axis and around 
the circumference. The tangential bolt spacing around the opening is 
defined by the product of the tunnel radius and the angle between 
two adjacent bolts (i.e St= ri.θ) as shown in Figure 2-2. 

The followings are the distinguishable steps of elasto-plasticity analysis that 
will be determined in the proposed solution: 

I. Constitutive model of material behaviour 

II. Lame’s solution for determination of the stresses in the elastic 
zone 

III. Stress in plastic ( yielding, overstressed, broken, undisturbed) 
zone 

IV. Stress at the interface of plastic and elastic zones 

V. Radius of plastic zone 

VI. Strains and displacements in the elastic zone 

VII. Strains and displacements in the plastic zone 

VIII. Radial displacement or tunnel convergence (closure) 

 

1.2 Definition of the problem 

The problem is defined in Figure 1-1. Consider a circular opening being 
excavated in an infinite medium subjected to isotropic initial stress, Po. The 
excavation removes the boundary stresses around the circumference of the opening, 
and the process may be simulated by gradually reducing the internal (support) 
pressure, Pi. As Pi is reduced, a plastic zone is formed when the material is 
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overstressed, and the radial displacement, ur, occurs. It is required to compute the 
stresses and displacements around the tunnel, when plane strain condition along the 
axis of the tunnel is reached.  

 

 
Figure 1-1 Definition of the model 

 

1.3 Method of solution 

For a solution of the elasto-plastic problem, the equation of equilibrium, 
compatibility condition, stress- elastic strain relationship, yield criteria, plastic 
potential, and a flow rule are required. The stresses and displacements in the elastic 
region may be readily determined by observing the continuity of radial stresses and 
displacements at the elastic-plastic interface. The solution within the plastic region 
will depend on the assumption of (a) the yield criterion, (b) the use of associated or 
non-associated flow rule, and (c) the dilatancy angle ψ. 

Under the axi-symmetric plane strain condition, the strains and the 
displacements are expressed as 

 

0,0),( === zrr uuruu θ                                                                                          (1-1)                      

0,, ==
∂
∂

= z
r

rr r
uu

r
εεε θ                                                                                      (1-2)            
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where the subscripts r, θ, and z denote respectively radial, tangential, and 
longitudinal (axial) directions. The compatibility condition is given by: 

 

rr
r

εεθ =
∂
∂ )(    or   0=

−
+

∂
∂

rr
rεεε θθ                                                                  (1-3) 

 

or in differential equation form: 

0=
−

+
rdr

d t
r

tt εεε θθ         

 

For small deformation and infinitesimal strains, the total strains are divided 
into the elastic and plastic components 

 
p

ij
e
ijij εεε +=                                                                                                                 (1-4) 

 

where the superscripts and e and p denote elastic and plastic components, 
respectively. Furthermore, the elastic strain component may be divided into the 
deviatoric and volumetric components (Timoshenko & Goodier, 1970) as 

 

ij
ee

ij
e
ij v δεε +=                                                                                                             (1-5) 

 

where e
ijε  = elastic deviatoric strain component; ev = elastic volumetric component 

)
3
1( e

kkε and 

ijδ =Kronecker’s delta ),,3,2,1,()(,0)(,1 zrorjiwherejiandji ijij θδδ =≠=== . 

Similarly, the stress component ijσ  is divided into the deviatoric and 
volumetric components: 

 

ijoijij δσσσ +′=                                                                                                           (1-6) 

where ijσ ′ = deviatoric stress component, oσ = volumetric stress component )
3
1( kkσ , 

and the summation convention is implied by the repeated dummy indices. 

The constitutive equations relating the deviatoric and volumetric 
components of stresses and elastic strains are therefore given by: 
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ij
e
ij E

σνε ′+
=

1
                                                                                                               (1-7)                    

o
e

E
v σν21−

=                                                                                                              (1-8)                             

 

where E is Elasticity or Young’s modulus and ν is the Poisson’s ratio. 

The flow rule of plasticity relating the plastic strain increment
p

ij

.
ε  and the 

plastic potential Q is given by: 

 

ij

p

ij
Q
σ

λε
∂
∂

=
.

                                                                                                                 (1-9)                        

 

The above elasto-plastic stress- strain and stress-strain increment 
relationships are generally used, and are listed for completeness. The choice of 
yield criteria and plastic potential will be discussed in the following parts. 

 

1.4 Yield criterion 

Yield initiation is assumed to occur following a non-linear Hoek & Brown 
failure criterion. In this elasto-plastic solution the latest version of the Hoek & 
Brown yield criterion introduced in 2002 (Hoek et al. 2002) has been chosen to be 
the main constitutive model for behaviour of the rock mass. 

The Hoek-Brown yield criterion for intact rock defines the combination of 
major and minor principal stresses (σ1 and σ3) at failure to be as: 

 

2
1

3
31 1








++=

ci
ici m
σ
σ

σσσ                                                                                   (1-10)                        

 

where σci is the unconfined compressive strength of the rock and the coefficient mi 
is a parameter that depends on the type of rock (normally 5 ≤ mi ≤ 40). Both 
parameters, σci and mi , can be determined from regression analysis of triaxial test 
results (Hoek & Brown 1980; Hoek et al. 1995). 

The Hoek-Brown yield criterion was later extended to define the shear 
strength of rock masses. This form of the yield criterion, which is normally referred 
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to as the generalized Hoek-Brown yield criterion in terms of peak strength, is 
(Hoek, 1994 and Hoek & Brown, 1997): 

 
a

ci
bci sm 








++=

σ
σ

σσσ 3
31                                                                                  (1-11)                         

 

 The coefficients mb, s and a in Equations 1-10 and 1-11 are semi-empirical 
parameters that characterize the rock mass. 

  In practice, these parameters are associated with rock mass rating RMR 
and more recently the Geological Strength Index or GSI (Hoek, 1994, Hoek & 
Brown, 1997). This index lies in range 6 to 90 and can be quantified from charts 
based on the quality of the rock structure and the condition of the rock surfaces 
(Hoek & Brown 1997; Hoek, Marinos, & Benissi 1998).  

 In the latest update of the Hoek-Brown yield criterion, the relationship 
between the coefficients mb, , s and a in Equation 1-11 and the GSI is as follows 
(Hoek et al. 2002): 

 









−
−

=
D

GSImm ib 1428
100exp                                                                        (1-12) 

 









−
−

=
D
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39
100exp                                                                                (1-13) 

 

( )3/2015/

6
1

2
1 −− −+= eea GSI                                                                      (1-14) 

 

Figure 1-2 depicts the Hoek & Brown yield criterion for different quality of 
rock masses (GSI= 100, 50, and 5). 

In Equations 1-12 and 1-13, D is a factor that depends on the degree of 
disturbance to which the rock has been subjected to blast damage and stress 
relaxation. This factor varies between 0 and 1. Likewise, the generalized Hoek & 
Brown yield criterion in terms of the residual strength parameters can be defined as 
follow: 

 
a

ci

bci sm

′














′+′

′′+=
σ

σ
σσσ 3

31                                                                 (1-15) 
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The primed constants stand for the residual (post-peak) values of the rock 
mass. The Figure 1-3 represents the definition of both peak and residual values of 
Hoek & Brown constants. 

 
Figure 1-2 Hoek-Brown failure criterion for intact rock (curve a) and rock masses 

with decreasing values of GSI (curves b and c) 

 

Post-peak (residual parameters) behaviour is characterized by the flow rule 
that governs the plastic deformations. In the perfectly plastic material model, there 
is no strength drop after peak; hence, yielding continues to occur at a constant peak 
stress level. However, a strain weakening behaviour is generally observed in most 
rocks where the post- failure behaviour is strain-dependent. 

The elastic-brittle-plastic model is a simplification of the above described 
behaviour, and is characterized by an instantaneous strength drop at peak as shown 
in Figure 1-4. The Hoek & Brown failure criterion is still applicable although the 
post-peak strength is reduced. 

It has been substantiated that the extension of the broken zone relies on the 
residual value of the intact rock strength (Hoek & Brown 1980, Brown et al. 1983, 
Indraratna & Kaiser, 1990a, Carranza-Torres, 2004). Hence, the effect of the 
compressive strength of rock material must be included in the form of the residual 
value because it loses its initial value due to stress relief or an increase in the strain. 
A stress reduction scale must, therefore, be considered as: 
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cici S σσ .=′                                                                                              (1-16) 

 

where S refers to the strength loss parameter quantifying the jump in strength from 
the intact condition to residual condition or a measure of the degree of strength loss 
occurring immediately after the peak strength is reached. The parameter S 
characterizes the brittleness of the rock material: ductile, softening, and brittle.  

 

 
Figure 1-3 Peak and residual failure envelopes considered for the generalized Hoek-

Brown failure criterion for the problem in Figure 1.1. 

 

ε 

Perfectly plastic 

Strain softening 

Brittle 

σci 

 
Figure 1-4 Different post-peak strength models of rocks 
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By definition, S will fall within the range 0<S<1. Where S= 1 implies no loss of 
strength and the rock material is ductile, or perfectly plastic. By contrast, if S=0, 
the rock is brittle (elasto-brittle plastic) with the minimum possible value for the 
residual strength (i.e. σ1=σ3) as highlighted in the Figure 1-4. 

 

1.5 Flow rule of plasticity and plastic potential 

From the classical stress-strain curve standpoint, at the failure point and post 
–peak behaviour of a rock, it is important to determine the post-failure parameters 
of rock due to their applicability in the analysis of the deduced broken (yielded) 
zone as well as reinforced rock mass around the opening. The theory of plasticity is 
recognized to be a tool, whereby; post peak parameters of rock can be determined 
based on selective yield condition.  

The flow rule of plasticity relating the plastic strain increment
p

ij

.
ε  and the 

plastic potential Q is, as shown before, given by (Hill, 1950): 

 

ij

p

ij
Q
σ

λε
∂
∂

=
.

                                                                                            (1-17) 

where λ is a non-negative constant of proportionality which may vary throughout 
loading history. It is also necessary to be able to define the stress state at which 
yield will occur and plastic deformation will be initiated. For this purpose, a yield 
function F(σ) is defined such that F=0 at yield. If Q=F, the flow law is said to be 
associated. In this case, the vectors of σ and εp are orthogonal; this is known as the 
normality condition. 

The concept of associated plastic flow were developed for perfectly plastic 
and strain-hardening materials using yield functions such as those of Tresca and 
von Mises which are independent of the hydrostatic component of stress. Although 
these concepts have been found to apply to some geological materials it can not be 
assumed that they will apply necessarily to pressure-sensitive material such as 
rocks in which brittle fracture and dilatancy typically occur. Rocks and rock masses 
often display apparently strain-softening characteristics. The modelling of strain-
softening behaviour using plasticity theory presents a number of difficulties. 
Plasticity is a continuum theory whereas strain-softening in isotropic continuum is 
impossible theoretically because it intradoses instability. Strain-softening can exist 
only in a heterogonous material. Heterogeneity in an initially homogeneous 
material that is deformed uniformly is produced by the localization of shear strain 
or fracture. Non-normality and non-uniqueness of solution may be associated with 
such behaviour. It has been found experimentally that an assumption of associated 
flow overestimates the amount of dilation occurring in yielding rocks (Michelis & 
Brown 1986). This observation has lead to the development of a number of non-
associated flow rules for rocks. 
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When an associated flow rule applies, the yield criterion and the plastic 
potential function are the same functions of the stress components. In other words, 
the flow rule is referred to as associated if the plastic potential and yield surface 
coincide. As a consequence of this, the plastic strain increment vector must be 
normal to the yield surface. If the yield surface is represented by a relation between 
principal stresses, σ1 and σ3, then the corresponding components of the strain 
increment vector are the increments of ε1

pand ε3
p. If the flow rule is non-associated, 

the yield criterion and the plastic potential function are not the same and the 
normality principles do not apply. There is limited evidence available to suggest 
that the dilation rate at peak stress in dense brittle rocks or tightly interlocked 
aggregates can be predicted closely using the associated flow rule. It is not clear, 
however, that the associated flow rule applies to heavily fractured and poorly 
interlocked rock masses. Indeed, analyses of data obtained from Brown et al.(1983) 
suggest that, in some such cases, the flow rule will be non-associated. This means 
that the resulting plastic volume changes will be less than those predicted using an 
associated flow rule. 

According to analyses obtained by an explicit solution undertaken by Wang 
(1996), it was deduced that calculated results by linear Mohr-Coulomb criterion 
may overestimate the surface closure in low normal stress, but underestimate the 
opening closure under high normal stress. For the non-linear case, it was concluded 
that a non-associated flow rule should be used in general. It is suggested that a 
nonlinear yield criterion in combination with linear yield potential be used with a 
non-associated flow rule to achieve an appropriate prediction for the opening 
surface closure in poor quality rock masses where GSI < 27. 

More recently, Cundall et.al (2004) have already developed a new 
constitutive model based on new version of Hoek & Brown failure criterion in 
which the flow rule of plasticity is defined in terms of confining stress level being 
used. They show that, unlike the past constitutive model, the new flow rule can be 
express in the case of a variable form, where it is function of confining stress level. 
For a low confining stress, at which a large rate of volumetric expansion at yield is 
anticipated, an associated flow rule is applied whereas for high confining stress, at 
which the material no longer dilates at failure, a constant-volume flow rule (non-
associated) is prescribed.  

For cases considering the Hoek-Brown material, most of the published 
analyses take account of a non-associated flow rule with a “constant dilation 
angle”, derived from a “linear” potential. In Hoek-Brown failure criterion, the yield 
surface is a parabola, and then if the potential is linear, the flow rule will be always 
non-associated. Note that the different situation as if you have a Mohr-Coulomb 
(i.e., linear) failure criterion: if the potential is linear and the dilation angle is equal 
to the friction angle, then both, yield surface and potential are the same, therefore 
the flow rule is “associated”. On the other hand, if the dilation angle is different 
from the friction angle, then the flow rule will be non-associated.  

  Depending on the linearity or non-linearity of both the yield function and 
plastic potential, the following classification given in Table 1-1 can be helpful. As 
can be seen, there are two natural choices as potential functions for the Hoek- 
Brown failure criterion: 
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Table 1-1 Yield and potential functions used in the various tunnel elasto-plastic models 

Yield and potential functions 

                

                    Linear function                                                         Non-linear Function 

                             M-C                                                                                  H-B 

                    F(potential)=F(yield)             F(potential)=F(yield)  

                     Linear potential function                                       Normality and associated flow rule 

                     Ψ=Ф  Associated  flow rule                                             F(potential)≠F(yield) 

                 ψ≠Ф    Non-associated flow rule                                          Linear potential function 

                                                                                                              Non-linear yield function 

                                                                                                              Non-associated flow rule 

                                                                                                               Constant dilation angle 

 

The first one is to take a potential that has the same form as the yield 
surface, and this will be the associated flow rule. This case will show the maximum 
volumetric change possible, also maximum value justifiable in mechanical terms 
for the plastic state.The second is to take a linear potential with zero dilation angle 
Q(σ1,σ3)=0, and this will be non-associated flow rule. This will show no 
volumetric change in the plastic state. 

In general, the most probable situation will be one between both extreme 
types of volumetric behaviour in the failure state (associated flow rule and non-
dilatant, non-associated).  

For poor very weak rock masses (GSI < 27) which is mostly related to the 
subject of the thesis, Hoek and Brown (1997) suggest taking zero dilation, so, for 
very weak rock masses, the second alternative defined above is therefore the one to 
use in this elasto-plastic closed-form solution. 

Figure 1-6 shows the linearized plastic potential in the principal stress and 
plastic strain increment space. As far as a certain stress range is concerned, both the 
yield surface and the plastic potential may be linearized. For an isotropic material, 
the principal axes of stress and strain increment coincide, and therefore a plastic 

strain increment vector AA’ ( 1

.

3

.
,εε ) may be plotted. Under plane strain condition, 

the ratio of plastic strain increment is given by: 

Linear plastic potential using Mohr-Coulomb function 

0cos2sin)()( 3131 =−+−−= φφσσσσ cQ                                                  (1-18) 
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or 

0231 =+−= φφσσ NcNQ  

where 
φ
φφ

sin1
sin1

−
+

=N  

Using the flow rule (Eq. 1-17), then 









−
+

−=

+−=

−=

φ
φ

ε
ε

φλε

φλε

sin1
sin1

)sin1(

)sin1(

1

3

3

1

p

p

p

p

                                                                                  (1-19) 

 

In the case of defining the plastic potential, the subscript φ is replaced into ψ 
to express the role of dilation. The parameter Nψ controls the inclination of the 
plastic-strain rate vector represented  

 

ψε
ε

σ
σ N

d
d

d
d

p

p

=−=
1

3

3

1                                                                                                  (1-20) 

or 

013 =+ pp dNd εε ψ  

or in polar coordinate 

0=+ pp
r dNd θψ εε                                                                                                 (1-21) 

where )
2

45(tan
sin1
sin1 2 ψ

ψ
ψ

ψ +=
−
+

=N  

 

Given the plastic part of stress-strain curve of rock (see Figure 1-5) the 
slope of the plastic part of the axial and lateral strains in plastic region is 

 

p

p

d
d

f
1

3

ε
ε

−=         

                                                                                                          (1-22)                                                 

Besides, the slope of volumetric strain versus axial strain in the plastic 
region can be obtained 

 

F=f-1                                                                                                       (1-23)                        
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Therefore 

ψNFf =+= 1                                                                                                         (1-24)        

 

The parameter Nψ is the dilation coefficient that characterizes the volume 
change in the plastic zone.  Zero volumetric strain (no volume change) is 

represented by Nψ  =1 i.e. ψ=0. If )
2

45(tan
sin1
sin1 2 ψ

ψ
ψ

ψ +=
−
+

=N , the associated 

flow rule is obtained for a Mohr-Coulomb material. For a material with a friction 
angle of 30°, a value of Nψ =3 is a upper bound for dilation. 

 The associated low assumes that the plastic strain increments are normal to 
the failure envelope (2-D problem) satisfying normality condition, thereby 
generally overestimates the plastic strains in rock .Therefore, a non-associated flow 

rule (1< Nψ <
ψ
ψ

sin1
sin1

−
+ m) is more realistic.  

The vector AA’ is normal to the plastic potential ‘Q’ then Q forms an angle 
tan-1Nψ with the ε3 axis, and satisfies the Equation 1-18. 

 
Figure 1-5 Stress-strain regime for a rock obeying elasto-britlle-plastic behaviour 
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F(σ)=0

σ3, ε3 

σ1, ε1 

dε1
p

dε3
p

Hoek & Brown yield function 

Q (σ)=0 
Mohr-Coulomb plastic potential 

A

A’

Normal 

 
Figure 1-6 Linearized flow rule concept used in this study 

 

1.6 Stress in the plastic zone 

The combination of the equilibrium equation and residual failure criterion 
results in the following ordinary differential equation: 

 

0=
−

+
rdr

d rr θσσσ
                                                                                                (1-25) 

 

 0=θτ r  Axi-symmetrical problem 
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                                                                             (1-27) 

 

   The shear stress (τrθ) at any given radial distance is zero for axisymmetric 
deformation under plane strain condition. For an unsupported opening where bolt 
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density parameter (β=0) and by taking into account the boundary condition at r=ri 
σr =0, the solution of non-linear Equation 1-27 is given by: 
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b
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=                                                                                                                 (1-28)     
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1

1 ln)1(                                                                      (1-29)                  

 

In literature some analytical solutions, mostly based on the convergence-
confinement method, used the internal pressure (Pi) as the effect of the fictitious 
support pressure that imposes of the tunnel boundary. In such a case, in order to 
draw the ground characteristic curve the support pressure must decrease gradually 
as the convergence increases. For this case, the solution of non-linear Equation 1-
27 is obtained by taking into consideration the boundary condition at r=ri , σr =Pi : 
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1.7 Stress in the outer elastic zone 

In the elastic zone, the stress distributions are given by classical Lame’s 
solution as follows: 
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where σre is the radial stress at the elastic-plastic interface. 
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The stress distribution in the elastic zone is equivalent to that of a larger 
opening of radius re, supported by a uniform internal stress σre under the same 
external field stress. re is the radial distance to the outer limit of the yielding zone 
surrounding the opening. 

At the elastic-plastic boundary (r=re), the internal stresses are given by from 
plastic part: 

 

′

′
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ci

b

re
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From elastic part at r=re the Equations 1-32 and 1-33 can be arranged as: 

 

)(2 reoree P σσσθ −=−                                                                                           (1-36)                       

 

oree P2=+σσθ                                                                                                          (1-37)                             

 

Using the peak strength criteria for elastic-plastic boundary: 
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Equating 1-36 and 1-38 yields the following non-homogeneous equation: 

 
a

ci

re
bcireo smP 








+=−

σ
σ

σσ )(2                                                                            (1-39) 

 

A closed-form (exact) solution is only possible when 5.0=a . However, 
numerical methods (approximate solution), like the Newton-Raphson method, can 
be applied to approximate the exact solution to Equation 1-39 (Press, Flannery, 
Teukolsky, & Vetterling, 1994). Subsequently, the Equation 1-39 is independently 
solved when 5.0=a  
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Negative subtraction of above equation is acceptable and after abbreviating  
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1.8 Radius of the plastic zone 

   The plastic zone radius re can be determined by assuming continuity of 
radial stress at the elastic-plastic boundary. It is also assumed that the field 
boundaries are far enough from the opening, such that their influence on the 
solution on the solution for re is negligible. 

 Equating the expressions 1-34 and 1-40 (for σre at r= re), the normalized 
plastic zone radius (re/ri) can be derived as follows: 
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1.9 Strains and displacement analysis 

1.9.1 Strains in elastic zone 

Hook’s laws can be applied to determine the radial and tangential strains in 
the elastic region surrounding the plastic zone (Timoshenko & Goodier, 1970): 
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Under axi-symmetrical condition  
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0== zyzx ττ    

 

Recalling stresses in elastic zone (Equations 1-32 and 1-33) and substituting 
into Equations 1-44 and 1-45 provide the strain field for under plane strain 
condition 
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1.9.2 Strains in plastic zone 

The total strains in the plastic zone are made up of both elastic and plastic 
strains as given by the Equation 1-4. Hook’s law and flue rule have been applied to 
calculate the elastic and plastic strains, respectively. Expanding the Equation 1-4 
under plane strain condition yields 
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It should be, at this point, noted that the elastic strains are very small 
compared to the plastic strains. 

 

1.9.2.1 Determination of the elastic strains in the plastic zone 
Using generalized Hook’s law (Equations 1-44 and 1-45) and substituting 

stresses in the plastic zone (Equations 1-26 and 1-28): 
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Then 
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1.9.2.2 Determination of the plastic strains in the plastic zone 
Substituting the Equations 1-50 and 1-51 in the strain compatibility 

(Equation 1-3) and taking account of the flow rule (Equation 1-17) provide the 
following non-linear differential equation: 
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The boundary condition used in solving Equation 1-53 can be written as: 
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   Even though it is first order, the non-liner Equation 1-53 can be solely 
solved by the numerical methods provided by some packages such as 
MATEMATICA or MAPLE. The solution of the Equation 1-53, considering the 
prescribed boundary condition, will be as below: 
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As can be seen from Equation 1-54, an integral function has been introduced 
in the result of the differential equation. The complete solution can be obtained 
provided that the integral on the right side of the Equation 1-54 is evaluated 
numerically as represented in the Appendix A. 

 

1.9.2.3 Radial displacement field 
The displacement field can be obtained directly by the following strain-

displacement relationships which satisfy the compatibility conditions: 
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The conditions of plane strain under axi-symmetric deformation (γrθ) imply 
that the total strains are independent of the tangential strain components. Therefore, 
the radial displacement field can be readily evaluated from any of the following 
expressions: 
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The displacement field is then given by: 
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where Г can be obtained from Equation 1-29 as below 
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Subsequently, elasto-plastic tunnel surface convergence can be subsequently 
determined by substituting r=ri in the above expressions.  
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Neglecting elastic strain due to its very small magnitude in comparison with 
plastic strain, the above equation will be simplified as: 

 





















Γ′′+−′

+

=

∫ ′−
+

+
+

drrma
r

r
r
M

Gr
u

e

i

r

r

aN
bciN

i

N
eN

i

ci

i

r

1
)1(

)1(
1

)2)(1(12
1

ψνσ

σ

ψ

ψ
ψ

                                                   (1-58) 

 

Appendix B presents the spreadsheet form of a practical example to be 
solved by the proposed elasto-plastic solution. 
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1.10 Convergence- confinement method 

The principles of the method can be outlined briefly here. Initially the 
ground is assumed to be naturally stressed at a hydrostatic Po pressure and a tunnel 
of radius ri is excavated. Assuming a point in the periphery of the opening as a 
reference point, some inward displacement (towards the tunnel axis) will be 
recorded as the tunnel face progresses towards the point of reference. This 
deformation can be simulated by the action of equivalent pressure acting internally 
in the opening which can be expressed as a fraction of the initial in situ Po stress. 
This is called the “equivalent support pressure” since it gives the same radial 
deformation or otherwise known as “pre-convergence”. From the initial pressure Po 
the ground is gradually unloaded (relaxed) and for some time it behaves elastically. 
If the ground reaches its strength, further unloading causes the mass to deform 
plastically and a failure zone is formed around the opening. If at a certain distance 
d from the face of the tunnel support is installed, then the support pressure versus 
support deformation plot can be plotted on the same coordinate system as the 
characteristic curve. The intersection of the two curves is presumably the point of 
equilibrium for the ground and support assuming that no secondary effects such as 
creep or long term strength loss occur in the ground. More recently, the 
convergence-confinement method has been critically reviewed and well-assessed in 
connection with various support and reinforcement systems by Carranza-Torres 
and Fairhust (2000), Oreste and Peilla (1996), Oreste (2002, 2003), Peila and 
Oreste(1995), Peila et al. (1997). 

    Perhaps the most critical points in the above method are estimating how 
much deformation (or relaxation) has occurred in the rock mass prior to the 
installation of the support. The knowledge of this pre-deformation would allow 
positioning the support curve at the right origin on the horizontal axis. Panet & 
Guenot (1982) reviewed the problem of the radial deformations along the length of 
a tunnel by using measured data and at the same time by conducting parametric 
analysis using simple axi-symmetric formulations. In the following parts we will 
see that the final displacement obtained from the proposed analytical model could 
be referred as the deformation prior to the installation of the support. 

    According to Panet & Guenot (1982), convergence of the tunnel can be 
expressed as a function of several parameters including the distance of the assumed 
point from the tunnel face, the unsupported distance behind the face and the 
stiffness of the support system. The convergence – confinement method attempts to 
associate the convergence of the tunnel with the distance from the tunnel since if 
such a relation is known then any pre-convergence that has occurred before the 
support is installed and becomes effective, can be estimated. This is the mechanism 
exploited by the NATM philosophy and the fact that can lead to economic designs 
since timing of installation will determine the amount of picked up loads carried by 
the structural components of the support. The equivalent pressure pi is expressed as 
a function of the in-situ pressure by the use of the confinement loss factor λ: 
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oi PP )1( λ−=                                                                                          (1-59) 

The parameter λ varies from 0 for initial conditions, to 1 for a full excavated tunnel 
and equilibrium conditions. To the present various authors have suggested the use 
of some approximation for the estimation of the convergence ratio: C(x) / C(∞), 
where C(x) is the convergence at a distance x from the face and C(∞) is the final 
far away from the tunnel face. For unsupported tunnels in elastic ground this ratio 
is function of the tunnel radius and for yielding ground this is a function of the 
plastic parameters of the ground which affect the plastic radius developed around 
the tunnel.  

 

Figure 1-7 Schematic representation of the Convergence-Confinement concept along 
with longitudinal convergence profiles. 
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1.11 Validation of the proposed elasto-plastic model by numerical 
modelling 

There is often advantage in being able to validate the results of analytical 
solution with those of numerical modelling. In this chapter, as a check on the 
analytical results and in order to ensure the feasibility of the proposed analytical 
elasto-plastic model, a numerical analysis is carried out using the Finite Difference 
Code (Fast Lagrangian of Continua “FLAC”) and both results will be compared. 

A quarter symmetry and axi-symmetrical models are to be carried out in this 
part. The adopted geomechanical parameters used here is represented in Table 1-2. 

 
Table 1-2 Input parameters used in numerical modelling 

ri(m) 2
Po (MPa) 15
E(Gpa) 5.7
n 0.3
σci 30
y 0
mb 1.7
s 3.90E-03
mb' 0.85
s' 1.90E-03
a 0.5
S 1
σci' 27
r(m) 2
a' 0.5
Ny 1.0

Rock mass properties used in 
numerical modelling

 
 

1.11.1 Numerical modelling of a unsupported tunnel (Quarter symmetry 
model) 

A two-dimensional plane-strain FLAC model with the plane of analysis 
oriented normal to the axis of the hole is created for this problem. For this model, 
only a quarter of the problem needs to be analyzed because of the symmetry of the 
problem (quarter-symmetry). The model and boundary conditions are shown in 
Figure 1-8. In FLAC analysis the area representing the problem is divided into 
finite-difference zones, as shown in Figure 1-8. A total of 14400 zones (120 * 120) 
are used in this grid. The location of the boundary was varied to evaluate its effect 
on solution accuracy. The boundary is at 30 m (i.e., 15 times the tunnel radius 
width and height) from the tunnel axis. 

The validity proposed elasto-plastic model of circular tunnel satisfying the 
latest version of Hoek & Brown failure criterion must be tested by numerical 
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approach (FLAC codes). Therefore, it is appropriate that the stresses and 
displacements be determined for the case of a cylindrical tunnel in an infinite 
Hoek-Brown medium subjected to an in-situ stress field.  

The problem is based on the data used in Table 1-2.The strength is assumed 
to reduce after failure initiates; this is simulated by assigning a different set of 
Hoek-Brown properties for material that has failed (broken material) versus 
material that has not failed (intact material).  

 
Figure 1-8 Model for FLAC analysis of a circular tunnel in an infinite Hoek &Brown 

medium- quarter symmetry model 

 

This problem demonstrates the implementation of a FLAC constitutive 
model that has been modified with FISH. The Mohr-Coulomb failure surface is 
adjusted to approximate the Hoek-Brown failure surface. Figure 1-9 to Figure 1-12 
are the plots of FLAC output for the geomechanical parameters summarized in 
Table 1-2. Plots of the stress imposed on roof or tunnel, of the displacement, of the 
plastic zone extension, and of the displacement trajectory have validated the 
numerical modelling in quarter symmetry model. 

Figure 1-13 shows the radial and tangential stresses calculated by FLAC, 
compared to the analytical solution for σr , and σθ for the quarter-symmetry model 
and the FLAC results are essentially identical for the quarter-symmetry model. The 
displacement field near the tunnel for both analytical and numerical methods is 
displayed in Figure 1-14. It can be observed that there is a good agreement between 
the proposed model and the FLAC results. 

A significant result to be noted is that the displacement of proposed 
analytical solution varies considerably with the variation of the constant a of Hoek 
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& Brown failure criterion with the quality of rock mass. Unlike most of the existing 
elasto-plastic solutions for tunnel problems in Hoek-Brown media that consider an 
intact rock (i.e., a = 0.5),the proposed elasto-plastic solution for the axi-
symmetrical problem of excavating a circular tunnel in generalized Hoek-Brown 
material adopts the value of (a) in accordance with rock mass quality ( i.e., a ≥ 0.5). 
The differences between the displacements filed near the tunnel are presented in the 
Figure 1-15. As the magnitude of “a” increases proportionally with decreasing rock 
mass quality, a drastic increases in tunnel wall displacement is evident. The ground 
reaction curve (GRC) of the unsupported tunnel built based on proposed elasto-
plastic model is represented in Figure 1-16. 
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Figure 1-9 Stress in Y-direction indicating the support pressure at the roof of tunnel 

in quarter symmetry model 

 

1.11.2 Axi-symmetrical elasto-plastic model for unsupported circular tunnel 

The aim of this analysis is to monitor the displacement (convergence) near 
the face of an advancing tunnel using FLAC code. A circular tunnel is sequentially 
excavated in rock mass with geomechanical properties presented in Table 1-2. The 
aim of this exercise is to determine the displacements that take place before the 
lining is installed. Further, the ultimate displacement behind the face is obtained 
regardless of the 3-D face effect. This type of information can then be used to 
enable a two-dimensional plane-strain analysis to include the effect of tunnel 
advancement on relaxation of tunnel loads. Also the longitudinal displacement 
profile can be resulted from this analysis. Since the displacement at the time of 
support installation is around 30 % of total displacement, using the ground reaction 
curve the required support pressure can be acquired, which is a significant 
parameter in convergence-confinement method. 
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Figure 1-10 Displacement in Y-direction in quarter symmetry model 
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Figure 1-11 Plastic zone extension around the tunnel in quarter symmetry model 
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Figure 1-12 Displacements trajectories in quarter symmetry model 
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Figure 1-13 Tangential and radial stress filed result from the analytical and numerical 

methods 
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Figure 1-14 Displacement filed stems from the analytical and numerical methods 
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Figure 1-15 Variation of the displacements with different value of Hoek & Brown 

constant (a). 
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Figure 1-16 Ground Reaction Curve (GRC) of tunnel example based on elasto-plastic 

model 

 

For this example, the tunnel’s diameter is 4 m. The excavation increments 
are 1 m long. Figure 1-17 shows a cross section view of the sequential excavation. 

Because the axis of the tunnel is an axis of radial symmetry, an 
axisymmetric model is used in this example. The FLAC model has dimensions 72 
m by 80 m (grid 87 *160) and contains 13920 zones. Six times of tunnel diameter 
behind and ahead of the face are modelled so as to be able to depict the longitudinal 
displacement profile. The displacement at the face is recorded at i=5 j=81 for each 
step of excavation. A total of 52 steps are carried out. Figure 1-18 shows the zone 
geometry at the end of the run. 

Panet & Guenot (1982) have presented numerical analyses of the advancing 
face effect (k=1) for circular tunnels driven through elasto-plastic material. In their 
solutions, the prediction of the convergence profile behind the face requires a 
preliminary assessment of the ultimate time-independent closure and the final 
extent of the plastic zone. Alternatively, several in-situ convergence measurements 
behind the face may be utilized for the purpose of semi-empirical solution. 
However, the ultimate convergence and the corresponding plastic zone radius for 
both unsupported and reinforced openings can be determined by the analytical 
solution proposed in this thesis. Consequently, the 3-D convergence response near 
the tunnel face may be extrapolated from the ultimate time-independent behaviour. 

The proposed elasto-plastic solution predicts the ultimate convergence 
(more than two tunnel diameter behind the face). 3-D effects close to the face have 
been neglected. In reality, the observed convergence (ur) is affected by the face 
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effects, and is generally less than the predicted total convergence (ut) by the 
amount of displacement (ui) which occurs ahead of the face or prior to initial 
measurement. The ultimate displacements behind tunnel face are obtained to be 
27.9 mm and 25.2 mm by analytical and numerical methods, respectively. The 
displacement (convergence) at face is about 30 % of the total displacement as 
shown in Figure 1-19. Some important plots of FLAC analysis indicating 
displacement trajectories, displacement counters, and plastic zone extension are 
outlined in Figure 1-20 to Figure 1-22. 

 
 

 
Figure 1-17 Problem geometry and excavation steps 
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Figure 1-18 Zone geometry (detail) of the axi-symmetrical model 
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Figure 1-19 Profile of radial displacements ur for an unsupported tunnel in the 
vicinity of the tunnel face 
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Figure 1-20 Displacement trajectories at the face (intrusion) and at the wall 

(convergence) in axi-symmetrical model of tunnel 
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Figure 1-21 Symmetrical plastic zone around the axi-symmetrical tunnel model 
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Figure 1-22 Displacement in x-direction. The final displacement behind the tunnel 

face can be observed. 

 

 

 

 



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 35

 

CHAPTER 2 

2 ELASTO-PLASTIC SOLUTION FOR TUNNEL 
REINFORCEMENT DESIGN 

2.1 Introduction 

In Chapter 1, the axi-symmetrical analytical elasto-plastic formulations in 
the case of unsupported tunnel which is being excavated in natural rock mass have 
been introduced. In this chapter, the same problem will be investigated when the 
tunnel is reinforced by radial passive grouted rock bolts. The equivalent strength 
material approach is taken into account in such a way that the strength parameters 
of rock mass are uniformly improved as the result of the bolting effect. Finally, the 
Ground Reaction Curve (GRC) of reinforced tunnel, main component of 
convergence-confinement method, is readily built. 

2.2 Stress distribution along fully grouted bolts 

The shear stress distribution (τz) along a grouted bolt can be represented by 
(Xueyi, 1983): 

 

dzddQ zz τπ=−                                                                                         (2-1) 

                                                                                    

z

zbz
z d

dr
dz

dQ
d

σ
π

τ ⋅−=⋅−=
2

1                                                                     (2-2)                      

 

where bolt diameter d=2 × bolt radius (rb), Qz is the axial load distribution and σz 
is the axial stress distribution along the bolt. 

The shear stress is related to the first derivative of the axial stress; hence, a 
zero value of τz defined as the neutral point must exist where the axial stress attains 
a maximum. A model for stress distribution associated with grouted bolts has been 
proposed initially by Freeman (1978) based on field measurements from the 
Kielder experimental opening, and later by Xueyi (1983), also based on field 
observations. This model, illustrated diagrammatically in Figure 2-1, clearly 
demonstrates the occurrence of the neutral point at the location of the maximum 
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axial stress. It further exhibits points of inflection on the axial stress distribution 
associated with the maximum and minimum of the shear stress distribution, where: 

 
Figure 2-1 Stress distribution model for grouted bolts (after Xueyi, 1983) 

 

02

2

==
dz

d
dz

d zz στ                                                                                  (2-3) 

                                                                                                  

 The shear stress distribution is characterized by the division of the bolt into 
a pick-up length and an anchor length, on either side of the neutral point. This is 
justified mathematically by considering the equilibrium of the grouted bolt relative 
the surrounding rock. The pick-up length restrains the ground displacements 
towards the opening whereas the anchor length is restrained by the rock. The 
equilibrium of the bolt relative to the rock is thereby ensured as a result of the shear 
stresses acting in opposite directions along the pick-up length and anchor length, 
respectively. The relative displacement at the neutral point is essentially zero. Yu 
and Xian (1983) have independently investigated the interaction mechanisms of the 
fully grouted bolts and have provided further theoretical support for the above 
described model. The location of the neutral point along the bolt has been 
determined by equilibrium considerations, and it is given by: 

 









+

=
)(1ln

ir
L

Lρ                                                                                       (2-4) 
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where L is bolt length and ri is opening radius. According to observations, it was 
seen that ρ~ 0.45L+ri  or  L~(20-30) d. 

For a axi-symmetrical problem and considering  identical bolt with equal 
spacing along the opening axis and around the circumference, the tangential bolt 
spacing around  the opening is defined by the product of the opening radius and the 
angle between two adjacent bolts (i.e. ST=ri θ) see Figure 2-2. 

2.3 Influence of bolting on strength parameters and bolt density parameter 

The equilibrium of an element near an unsupported opening in accordance 
with theory of elasticity (Figure 2-2) can be represented by: 

0=
−

+
rdr

d rr θσσσ                                                                                   (2-5) 

 

Combination of the non-linear Hoek & Brown post-failure criterion 
(Equation 1-15), the Equation 2-5 leads to the following, referred to as the 
unsupported tunnel: 

0
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′+
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r σ
σ

σ
σ

                                                                  (2-6) 

                                                                        

 

In a bolted element (Figure 2-2d), the additional radial force due to shear 
stresses along the bolt is assumed to be given by the following expression 
(Indraratna, 1987): 

 

drd ⋅⋅⋅⋅=∆ λσπτ θ                                                                              (2-7) 

 

The equilibrium condition for this segment of longitudinal length SL can be 
represented by  
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where the bolt density parameter can be defined as: 

 



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 38

TL

i

L SS
rd

S
d λπ
θ
λπβ ==                                                                                    (2-9) 

 

 
Figure 2-2 Fully reinforced circular excavation and equilibrium considerations for 

bolt-ground interaction 

 

where d is the bolt diameter, ri is the tunnel radius, λ is the friction factor for bolt / 
grout interface, and SL and ST are the longitudinal and transversal bolt spacings, 
respectively. As apparent, the bolt density parameter (β) is dimensionless. It 
reflects the relative density of bolts with respect to the opening perimeter and takes 
into consideration the shear stresses on the bolt surface, which oppose the rock 
mass displacements near the opening wall. The magnitude of β can be increased by:  

 

I. Decreasing the bolt spacing  

II. Increasing the bolt surface area  

III. Increasing the roughness of bolt surface 

 

 In practice, the value of β varies between 0.05 and 0.20 for most cases. For 
openings excavated in poor rock mass such at the Enasan tunnel, analyzed by 
Indraratna & Kaiser (1990a) very high values for β (in excess of 0.4) were reached 
by very intensive bolting patterns.  
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The friction factor, λ, is analogous to the coefficient of friction. It relates the 
mean mobilized shear stress to the stress applied normal to the bolt surface. The 
magnitude of λ for smooth rebars falls in the range tan (φg/2) < λ < tan (2φg/3) and 
for shaped rebars approaches tanφg, depending on the degree of adhesion (bond 
strength) at the bolt/grout interface. The friction angle of a hardened grout (cement 
or resin) is comparable to that of most intact rock. The ratios β/λ for many case 
histories determined by Indraratna & Kaiser (1990a) indicates that the β/λ varies 
between 0.12 and 0.41 in a normal manner. 

 The bolt length, another important parameter for controlling displacements, 
is not included in the bolt density parameter because the effect of a bolt depends on 
its length relative to the radius of the yield zone. The shear stress distribution and, 
hence, the location of the neutral point are directly related to the bolt length, the 
extent of the plastic zone and the strength reduction in this zone. As will be shown 
later, the extent of the yield zone and the opening wall displacements can be 
effectively reduced by increasing the bolt length. 

 

2.4 Concept of equivalent material approach (equivalent strength 
parameters) 

By embedding the grouted rock-bolts in disturbed zone (yielded zone) 
around the tunnel, already characterized in terms of residual (post-peak) strength 
parameters, the strength parameters ( Hoek & Brown constants) of the disturbed 
rock mass will then be improved. In other words, grouted rock-bolts create a zone 
of improved, reinforced rock in the region defined by the pick-up length of the 
bolts. Within this zone, the strength parameters of yielded rock mass are increased 
as schematically shown in the Figure 2-4.   

Introducing the bolt density parameter (β), the equivalent strength parameter 
can be hypothesized as: 

 

bb mm ′+=∗ )1( β  

ss ′+=∗ )1( β                                                                                           (2-10) 

cici σβσ ′+=∗ )1(  

 

The definition of above equations is graphically illustrated in Figure 2-5 to 
Figure 2-7. The Equation 2-8 for bolted structure can be simplified as follows: 
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Comparison of this equation with Equation 1-27 for the unsupported case 
indicates that both equations have the same algebraic arrangement. 

It is worth noting that the coefficient a  for the reinforced tunnel is assumed 
to not be affected by the (β), rather it keeps its original value of 0.5 (i.e. aa =∗ ). 

 

2.5 Rock stabilization through effective material strength parameters 

As mentioned before, the strength parameters of rock mass (c and φ in 
Mohr-Coulomb criterion and m, s, a and  σci in Hoek-Brown criterion ) in yielding 
zone around the opening ( or ahead of the face) may be assumed to be degrade 
from peak value to residual values identified with the primed superscript in the 
Figure 2-8.  

Conversely, the Mohr envelope of the broken material may be raised up by 
improving its strength parameters (c* and φ* in Mohr-Coulomb criterion and m*, 
s*, and  σci*  in Hoek-Brown criterion ) by application of a radial, confining 
pressure through the use of grouted bolts. 

The development of load on a grouted bolt has the effect of providing 
additional confinement (increased radial stress) in the yielded zone. As a result the 
tangential stress at the same point is increased more than proportionately. The 
original failure envelope is thereby shifted upwards, indicating an improvement of 
the strength parameters as represented by the Mohr diagram in Figure 2-8. This 
enables the rock mass to behave as a stronger material leading to a corresponding 
reduction in opening convergence at a given field stress. 

The following expression has been introduced in the literature to show the 
effect of the rock bolting on improving of the yielding zone around the tunnel in 
terms of effective cohesion (Grasso et al. 1989, Pelizza et al. 2006). 

3cos2
sin1 σ
ϕ
ϕ

∆⋅
+

+=∗ cc                                                                            (2-12) 

 

where 3σ∆ is the confinement produced by the action of the grouted bolts: 

 

LT

m

SS
T
⋅

=∆ 3σ                                                                                         (2-13) 

 

where Tm is the mean force along each bolt, ST and SL are transversal and 
longitudinal spacing of the bolting pattern. 

Grouted bolts themselves are not considered to establish any radial support 
pressure, Pi, on the rock surface, so equilibrium for the ground reaction curve is 



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 41

reached as for unsupported rock when Pi=0. The principal effect of grouted bolts, 
compared to the unsupported rock mass, is that the stability of rock mass is 
improved as the bolts through tension load influence the strength of the rock mass 
and the volume expansion at failure. Consequently, owing to the fact that fully 
grouted bolts effectively improve the apparent strength of the rock mass, the 
behaviour of the reinforced opening can be ideally represented by a shift of the 
ground convergence curve. The vertical axis of the ground convergence curve 
(Figure 2-3) represents the fictitious radial stress (σs) required at the opening 
boundary to prevent further convergence. The horizontal axis represents the 
opening convergence at the opening wall (uri). The ground convergence curves are 
identical at every point along the opening boundary for the condition of 
axisymmetric yielding under hydrostatic field stress. 

The response of an unsupported opening in yielding rock is given by curve 
A. curve B represents an imaginary ground convergence curve of the opening, 
where bolts would have been installed before any displacements could have 
occurred. In reality, an initial displacement (uo) of the opening wall occurs prior to 
the installation and subsequent activation of the grouted bolts. The magnitude of 
convergence after bolting is dependent on the apparent stiffness of the bolt/ground 
composite, and is reflected by a shift of the ground convergence curve from curve 
A to curve C, as a result of the reduced yield zone. An example of ground reaction 
curve of a reinforced tunnel will be presented in the following sections.  In contrast 
to fully grouted bolts, pre-tensioned mechanical bolts provide direct radial pressure 
(active support) against the opening wall, but do not become an integral part of the 
deforming rock mass. Consequently, their performance is best represented by a 
support confinement curve with a specific stiffness and its interaction with the 
original ground convergence curve. 

 
Figure 2-3 The effect of grouted bolts on the Ground Reaction Curve 
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Figure 2-4 Creation of the Equivalent Plastic Zone around the circular tunnel reinforced by grouted rock-bolts 

a) Plastic zone induced around 
the unsupported tunnel

Residual (Post-peak) strength 
parametes mb', s', s'ci

b) Grouted rock-bolts are installed in 
the already induced yielded zone 
around the tunnel

a) Induced plastic zone + grouted 
rock bolt can be considered as the 
Equivalent Plastic Zone 

Equivalent strength parametes 
mb*, s*, s*ci
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Figure 2-5 Variation of the Equivalent strength parameter “m*” of Hoek & Brown failure criterion with β 
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Figure 2-6 Variation of the Equivalent strength parameter “s*” of Hoek & Brown failure criterion with β 
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Figure 2-7 Variation of the Equivalent Compressive Strength with β 
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Figure 2-8 Increase of strength parameters by reinforcing the ground  
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2.6 Influence of bolt length on tunnel wall stability 

One other important parameter for controlling displacement, i. e. the bolt 
length, is not included in the bolt density parameter because the effect of a bolt 
depends on its length relative to the radius of the yield zone. The shear stress 
distribution and, hence, the location of the neutral point are directly related to the 
bolt length, the extent of the plastic zone and the strength reduction in this zone. As 
it will be shown later, the extent of the yield zone and the tunnel wall displacement 
(convergence) can be effectively reduced by increasing the bolt length. 

2.7 Concept of equivalent plastic zone 

Grouted bolting is capable of improving the weakened or loosened zone by 
increasing its apparent strength in terms of Hoek & Brown constants (mb, s, a, and 
σci ) as schematically represented in Figure 2-4. The extent of the plastic zone is 
directly related to this rock mass properties and any improvement of the rock 
strength must reduce the extent of the zone of overstressed rock, if the bolts are 
installed soon after excavation close to the face. Consequently, the plastic zone of a 
bolted opening is smaller than that of an unsupported opening in the same ground. 
This zone is called “Equivalent Plastic Zone” because it is the yield zone in a 
material of improved properties simulating a behaviour equivalent to the bolted 
rock mass. In other words, EPZ consists of a material with improved strength 
properties, representing the yielded, reinforced rock mass.  A reduction of the 
apparent plastic zone, in turn, curtails opening wall displacement. The extent of the 
plastic zone is influenced by the mechanical parameters (Hoek & Brown constants) 
and is independent of the elastic parameters E and ν. The following factors directly 
affect the radius re

* of the equivalent plastic zone: 

 

I. Bolt density parameter, β 

II. Bolt length, Lb 

III. Radius of the neutral point of the bolt , ρ 

IV. Opening radius, ri 

V. Field stress, Po 

 

   The determination of the equivalent plastic zone EPZ radius, re
*, must be 

divided into three categories depending on the location of the interface between the 
elastic rock and the equivalent plastic zone relative to the neutral point and the bolt 
length. These three categories are diagrammatically illustrated in Figure 2-9: 

 

 re
*<ρ< (ri +L)    minimal yielding 

 ρ<re
*< (ri +L)   major yielding 

 re
*>( ri +L)   excessive yielding 
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2.7.1 Determination of the Equivalent Plastic Zone Category I 

The condition of minimal yielding “re* < ρ < (ri +Lb) occurs either at 
relatively small field stresses or when the bolts are excessively long. In this case, 
the extent of the plastic zone is confined within the pick-up length of the bolt. In 
addition, four distinct zones can be identified by the location of the plastic zone 
corresponding to the neutral point and the bolt ends. 

 

Lb 

ρ 

τz 

ri re*  

Minimal yielding 
 
re* < ρ < (ri +Lb) 

Major yielding 
 
ρ < re*< (ri +Lb) 

Excessive yielding
 
re*> (ri +Lb) 

 
Figure 2-9 Categorization of the extent of the yielding (plastic zone) 
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2.7.1.1 Zone 1 : ri < r < re* 
In this region of the pick-up length, the ground displacements toward the 

opening are resisted by positive shear stress. The equivalent stress field in this zone 
is   represented by: 
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2.7.1.2 Zone 2 :  re* < r < ρ 
   This part of the elastic zone is confined to the pick-up length of the bolt. 

The elastic stress fields in this zone are given by: 
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The peak tangential stress at the elasto-plastic interface for S=1 is given by 
the following condition: 
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The radial stress at the elasto-plastic boundary σre is, therefore, derived by: 
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2.7.1.3 Zone 3 : ρ < r < (ri +Lb) 
   This part of the elastic zone is contained within the anchor length of the 

bolt. The radial and tangential stress fields are given by: 
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2.7.1.4 Zone 4 : r > ( ri + Lb) 
This outermost elastic region, beyond the bolt, is in virgin rock and the 

elastic stresses are given by: 
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where 
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The radial distance to the neutral point is given by Equation 2-4, as 
discussed earlier.  

 

2.7.1.5 Equivalent Plastic Zone (EPZ)  
At the elastic-plastic interface, the radial stress σre is obtained by Equations 

2-20 and 2-21 through the assumption of continuity of radial stress. Equating 
Equations 1-40 and 2-20 and then solving provides the normalized radius of the 
equivalent plastic zone (EPZ): 
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It is obvious that as β tends to zero, the parameters mb
*, s*, and σci

* approach 
mb , s ,and σci  . In other word, above equation becomes identical to that of 
unsupported case as Equation 1-43. Note that the equivalent value of a keeps its 
original value. Expressions for the Equivalent Plastic Zone radius can be derived 
for Categories (II) and (III) in the same manner. A summary is given below. 

 

2.7.2 Determination of the Equivalent Plastic Zone Category II 

The condition of major yielding, ρ < ri
*< (ri+Lb), occurs when the extent of 

the plastic zone has propagated beyond the neutral point. In this situation, the 
plastic zone itself is divided by the neutral point into two zones. Consequently, 
only the plastic zone region that falls within the pick-up length of the bolt is 
effectively stabilized by the positive shear stresses. The Equivalent Plastic Zone 
radius is given by: 
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where  
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2.7.3 Determination of the Equivalent Plastic Zone Category III 

The condition of excessive yielding, re
*> (ri +Lb), occurs either due to large 

in-situ stress in relatively poor rock or as a result of inadequate bolt length. In this 
situation, the bolt is completely embedded in the yielded rock and no anchorage is 
provided from the outer elastic zone. In this case the radius of the Equivalent 
Plastic Zone is obtained by: 

 

)( thqthq

i

e eeee
r
r ++
∗

=⋅⋅=                                                                          (2-30) 

)1(

1

2
1

2221

)1(

)1616(
88

)(

a
cib

a

cicibcibo
bcibb

boci
a

ciLb

am

smmP
mmm

mPssm
q ′−

′−

′−

′−′′









++

′
−

′
+′+′′−′′+′

=
σ

σσσ
σ

σσσ
 

)1(

11

−
Γ−

= ∗

−∗−∗

am
sh

b

aa

 

a
cib

a
ciLb

a
cib

am

smsm
t ′−

′−′−

−′

+−+
= 1

11

1
111

1
111

)1(

)()(

σ

σσσσ ρ  



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 52

1

1

1
1

ci

b

ci
L m

s

σ

σ
ξ

σ
−

=  

a
bia

cib
a

cib
Lr

amsm
′−

′−′−















 +
−′−+=

1
1

1
11

1
111 ln)1()(

ρ
σσσξ ρ  

 

∗

∗

∗∗ −Γ
=

ci

bm
s

σ

σ ρ  

a

i
b

a

r
ams

−
∗−∗∗

















−−=Γ

1
1

1 ln)1( ρ  

 

)1(1 β−′= bb mm    )1(1 β−′= ss    )1(1 βσσ −′= cici  

 

Having determined the Equivalent Plastic Zone *
er  with respect to its 

category (categories I to III), the ultimate tunnel convergence can be obtained by: 
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The formulations of elasto-plastic solution for grouted bolt design are 
presented in spreadsheet presented in the Appendix B. 

2.8 Practical application of the proposed elasto-plastic solution 

The following example, posed by Hoek & Brown (1980) and Carranza- 
Torres (2004), is intended to illustrate the practical application of the proposed 
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approach in determining the elasto-plastic response of an opening. Two cases are 
considered, one for an unsupported tunnel, the other for a tunnel reinforced by 
grouted bolts, both for a rock mass of known properties outlined in the Table 2-1. 
The solution of this example in the form of spreadsheet is given in Appendix B. 

Calculated radial and tangential stresses are shown in the Figure 2-10, 
indicating that the radius of plastic zone is 5.09 m. The maximum displacement of 
the tunnel surface is found to be 30.7 mm as illustrated in Figure 2-13. The Ground 
Reaction Curve, often being used in the rock-support interaction analysis, is 
depicted in Figure 2-11. 

The effect of the grouted bolts can be best described with reference to the 
Figure 2-12, Figure 2-13, and Figure 2-14. As can be seen from Figure 2-12, the 
additional radial stress can be attributed as previously presented in Figure 2-8. Also 
it can be observed that the radius of the plastic zone decreases from 5m to 4.6m 
while a convergence reduction by 20 % is recorded as referred to Figure 2-13. 

 
Table 2-1 Input parameters used in the practical example 

ri(m) 2 λ 0.6
Po (MPa) 15 d (mm) 32.00
E(Gpa) 5.7 Cb (kN) 280.00
n 0.3 St (m) 1.00
σci 30 Sl (m) 1.00
y 0 Lb (m) 3.00
mb 1.7 ρ(m) 3.27
s 3.90E-03 β 0.121
mb' 0.85 mb* 0.953
s' 1.90E-03 σci* 30.257
a 0.5 s* 2.129E-03
S 1
σci' 27
r(m) 2
a' 0.5
Ny 1

Rock mass properties Grouted bolt 
specifications
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Figure 2-10 Stress field around the unsupported tunnel surface  
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Figure 2-11 Ground Reaction Curve (GRC) of unsupported tunnel (natural ground) 

based on proposed elastic- plastic model 
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Figure 2-12 Radial and tangential stresses field near the reinforced tunnel 
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Figure 2-13 Comparison of the tunnel surface displacement for both unsupported and 

reinforced tunnel cases 
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Figure 2-14 Ground Reaction Curve (GRC) with and without grouted bolts based on 

proposed elasto-plastic model 

 

A helpful distinction to notice is that unlike the mechanical rock bolts which 
can be modelled through the Support Reaction Curve, the grouted bolts effect can 
be best investigated by reinforced ground reaction curve. This is due to the fact that 
in contrast to fully grouted bolts, mechanical bolts provide direct radial pressure 
against the tunnel wall, but do not become an integral part of the deformed rock 
mass. Consequently, their performance is appropriately represented by a support 
confinement curve with specific stiffness and its interaction with the original 
ground reaction curve.  In brief, the effect of grouted bolts on ground improvement 
in terms of its elasto-plastic response is represented by GRC as shown in the Figure 
2-14 for this example. 

 

2.9 The effect of the bolt density on stresses and displacement field 

The following example will depicts the influence of the bolt density on 
stresses and displacements field around a reinforced tunnel by grouted bolts. The 
input parameters of the example are given in the Table 2-2. 

The predicted stress and displacement fields for this tunnel, reinforced with 
32 mm grouted bolts and subjected to a far field stress of 15 MPa are presented in 
Figure 2-15 and Figure 2-16, respectively. Different bolt patterns (β=0 to β=0.3) 
are taken into account for comparison. 

 



TUNNELING AND TUNNEL BORING MACHINES  Edition 2005/2006

 

 57

Table 2-2 Input parameters used in this analysis 

ri(m) 2 

Po (MPa) 15 

E(Gpa) 5.7 

n  0.3 

σci (MPa) 30 

y 0 

mb 1.7 

s 3.90E-03 

mb' 0.85 

s' 1.90E-03 

a 0.6 

S 1 

σci' (MPa) 25 

r(m) 2 

a' 0.6 

Ny 1 

 

It can be seen from Figure 2-15 that as the bolt density parameter β 
increases, the radial and tangential stress fields approach those predicted  for non-
yielding, elastic rock, and the radius of equivalent plastic zone (re*) approaches the 
tunnel radius. Further away from the tunnel, the stresses field approaches the far 
field stress. 

For displacement field as shown in the Figure 2-16, as β increases, the 
displacement approaches the elastic solution. As distance from the tunnel wall 
increases, the effect of bolting diminishes rapidly and the far field conditions are 
obtained. It is evident that the maximum decrease in strains and radial 
displacements occurs at the tunnel wall. Hence, the tunnel wall convergence can be 
well-considered as the most appropriate parameter for a displacement control 
design approach. 

2.10 Normalized convergence ratio 

The total displacement (convergence) of a reinforced tunnel uri
* is a function 

of the rock mass, the field stress level and the reinforcement configuration. On the 
other side, the convergence of a reinforced tunnel can be presented by the 
dimensionless ratio uri

*/uri , where uri
*and uri are the total convergence of the 

reinforced and unsupported opening respectively at the same stress level. The total 
opening convergence includes both the elastic and plastic displacements. For a 
given field stress, uri

* is less than uri but it approaches uri when the bolt density (β) 
or the bolt length (Lb) tends to zero. 
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Figure 2-15 Stress field near the tunnel for different value of the bolt density 

parameter β 
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Figure 2-16 Displacement field near the tunnel for different value of the bolt density 

parameter β 
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The normalized convergence ratio decreases as the intensity of bolting 
increases. It obtains a minimum value when uri

* tends to ue, the elastic portion of 
the total convergence. The latter condition may be approached at every intensive 
bolt densities such as β > 0.30, which is not only rare in practice but is 
economically unattractive. The convergence ratio is particularly useful in the 
design of grouted bolts, since it reflects the reduction in convergence that can be 
achieved by a given bolting pattern. 

An important characteristic of the convergence ratio is that it is insensitive 
to moderate changes of the deformation and strength parameters. For instance, a 
change in Young’s modulus affects both uri

*and uri equally, hence the ratio uri
*/uri 

remains unaltered. The latter characteristic of the normalized convergence ratio 
makes its use in design even more reliable, since the variation of in-situ 
geotechnical parameters can be tolerated without any significant error. 

 

2.10.1 Normalized convergence ratio as a design aid 

The normalized convergence ratio uri
*/uri is relatively insensitive to 

moderate change of the fundamental similitude parameters (m ,s ,σci, E, ν , etc.) for 
a given reinforcement configuration (β, Lb). 

Figure 2-17 depicts the predicted results of analytical model for an example 
with various bolt pattern (Lb / ri = 1) at applied field stress levels between 2 and 16 
MPa. The obtained normalized convergence ratio uri

*/uri is plotted for these stress 
levels and five bolt density parameters β. uri

*and uri are the total convergence of the 
reinforced and unsupported tunnel, respectively. 

The normalized convergence ratio decreases as β increases (i.e., the tunnel 
convergence reduction is almost proportional to the bolt density). It can be 
understood that the normalized convergence ratio is independent of the elastic 
constants and is insensitive to moderate change of the uniaxial compressive 
strength and Hoek & Brown strength parameters for a given configuration of 
reinforcement.  Therefore, the normalized convergence ratio is applicable for 
design, even if the material properties cannot be clearly defined or if the in situ 
stress cannot be accurately estimated. It is believed that the relationship illustrated 
in Figure 2-17 for a given bolt length may be used for design purposes. 

For instance, for a tunnel of 5 m diameter excavated in a relatively poor 
rock mass (in a field stress of 10 MPa, i.e.  400 to 450 m deep) with 2 m long 
grouted bolts (Lb / ri =0.8), the tunnel convergence (wall displacements) would be 
reduced by 33 % for a bolt density β of 0.265. This could be achieved by installing 
45 mm shaped rebars (like self drilling anchors MAI-bolts λ=0.6) with a spacing of 
0.8m x 0.8m. 
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Figure 2-17 Variation of tunnel convergence with bolt density parameter for 2 m long 

grouted bolt  

2.11 Influence of grouted bolts on tunnel stability 

The radial strains and displacements at the tunnel wall are the most 
fundamental quantities required to evaluate the stability of a tunnel opening. In the 
field they are not only feasible to measure but are also generally reliable. The radial 
convergence of the reinforced opening wall can be predicted from the following 
equations, once the magnitude of re

* has been determined for the respective 
categories I to III as specified in the section 2.7. 
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Figure 2-18 illustrates the variation of the predicted convergence of a case 
example for different bolt pattern obtained by the proposed analytical model. The 
applied far field stress ranges between 0 and 16 MPa. As the bolt density increases, 
the displacement of the reinforced tunnel surface (uri*) decreases and varies 
between the upper and lower bounds of the unsupported tunnel displacement (uri 
dashed line A) and the response of an opening in linear elastic rock (ue dashed line 
F). For reinforced tunnel, a sudden increase in convergence (shift to the right as 
shown in Figure 2-18) occurs for β =0.35-0.121 at Po > 12 MPa. This transition 
takes place when all bolts become completely embedded in the plastic zone. When 
Category III: re

*>(ri +L) is reached. 

2.12 Use of displacement control (convergence reduction) approach for 
design  

The following example enlightens the use of the displacement control 
(convergence reduction) approach for design of grouted bolts. Consider a tunnel of 
3 m radius excavated at a depth of 150 m in a relatively weak sedimentary rock 
mass with the representative material properties outlined in the Table 2-3. 

The predicted convergence of the unsupported tunnel surface is determined 
to be 40.7 mm with a plastic zone radius of 8.9 m. if fully grouted bolts (λ = 0.6, 
diameter 32 mm, and length 6 m) were installed for temporary stabilization of the 
tunnel, with a bolt density β = 0.08, the extent of the equivalent plastic zone would 
be reduced by 20 % and the tunnel convergence by 25.3 % approximately. 
However, a greater bolt density of β = 0.181 would reduce the extent of the plastic 
zone by 26 % and the tunnel convergence as much as 32 %. 

Table 2-4 highlights typical percentage of convergence reduction with 
respect to the bolt density for a tunnel with the same material properties. It can be 
appreciably understood that in the case of the excessive yielding , in this case due 
to the insufficient bolt length  (Lb =3 m) in poor rock mass, a high bolt density (β = 
0.283) is required to effectively reduce tunnel convergence. In contrast, applying 
the grouted bolts with enough length (Lb = 6), even more convergence reduction 
can be achieved in a low bolt density of 0.08. Therefore, it is strongly suggested 
that in poor rock mass forming a large thickness of plastic zone or in squeezing 
ground condition, a rock-bolts pattern with appropriate length be installed. 
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Figure 2-18 Influence of field stress on tunnel convergence for different magnitude of 

the bolt density parameter 

 

Similarly, Oreste (2003) pointed out it is acceptable to introduce a criterion 
which prevents the plastic zone radius in the rock mass from exceeding the anchor 
length of the bolts: 

 

 re* < (ri +  a· Lb) ,  where a =0.5 – 0.75. 
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Table 2-3 Rock mass properties used in example corresponding to displacement 
control approach 

E(Gpa) 2 

ν 0,25 

σci 25 

ψ 0 

mb 0,55 

s 2,00E-04 

mb' 0,4 

s' 1,70E-04 

a 0,531 

S 1 

σci' 20 

r(m) 3 

a' 0,56 

Ny 1,0 

 
Table 2-4 The influence of bolt density parameter β on tunnel convergence 

Lb (m) ST · SL ST / Lb SL / Lb β 

% 
Reduction 

of 
convergence 

   Unsupported  0 0 

3 1,5 * 1,5 0,5 0,5 0,08 16 

3 1,2 * 1,5 0,4 0,5 0,101 17 

3 1,0 * 1,2 0,33 0,4 0,151 18 

3 0,8 * 0,8 0,26 0,26 0,283 21 

        

Lb (m) ST · SL ST / Lb SL / Lb β 

% 
Reduction 

of 
convergence 

   Unsupported  0 0 

6 1,5 * 1,5 0,25 0,25 0,08 25 

6 1,2 * 1,5 0,2 0,25 0,101 27 

6 1,0 * 1,2 0,16 0,2 0,151 30 

6 0,8 * 0,8 0,13 0,13 0,283 40 
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CONCLUSIONS 

Implications on proposed elasto-plastic model  

For the elastic–brittle–plastic analysis of circular openings in an infinite 
Hoek–Brown medium, the existing analytical solutions were found to be very 
complex and none of them has been developed based on latest Hoek & Brown 
yields criterion.  Therefore, the theoretical analysis presented in this thesis has 
introduced an alternative elasto-plastic solution to design of grouted bolts for 
tunnels and to depict the ground reaction curve for both unsupported and reinforced 
tunnels.  

Although most of the existing elasto-plastic solutions for tunnel design in 
Hoek & Brown media consider an intact rock (i.e., a = 0.5), the proposed elasto-
plastic solution supposes 5.0≥a  for rock mass. In addition, this solution is based 
on the assumption that after the intact strength of the rock is exceeded, the material 
loses its strength, as dictated by a strength loss parameter (S). 

The convergence control approach was used for the design of fully grouted 
bolts. The effectiveness of fully grouted bolts should be assessed on the basis of 
convergence reduction, which in turn should assist the designer in selecting the 
optimum reinforcement configuration. The numerical studies have verified the 
reliability of the analytical solution in the convergence prediction of both un-
reinforced and reinforced deep tunnel openings. 

The interaction mechanism between rock mass and grouted rock bolts has 
been based on the Equivalent Strength Parameter such that the global strength of 
rock mass is increased due to bolts effect. In this approach, the mechanical 
parameters of rock mass (Hoek & Brown constants mb, s, and σci) are improved 
through rock bolt density parameter (β). 

The influence of the bolt density parameter (β) on the apparent strength of 
the rock mass profoundly reflects the importance of the bolt spacing and bolt-grout 
interaction (frictional) in design. In poor rock mass, the use of shaped rebars with a 
relatively dense bolt configuration is recommended in practice. The evaluation of 
the Equivalent Plastic Zone radius (re*) as a function of the bolt density parameter 
and bolt length, provides a fundamental basis for the determination of a reinforced 
tunnel convergence. 

The normalized convergence ratio and the resulting bolt effectiveness are 
the fundamental design aids introduced in this analysis. The normalized 
convergence ratio is most appropriate in design, where the strength and frictional 
parameters are poorly defined.  

It can be inferred from the results of analytical study that the installation of 
an optimum number of grouted bolts immediately on excavation near the tunnel 
face contributes to a much greater degree of stabilization and the provision of 
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supplemental bolting at a later stage. It is indeed that initial bolt configuration that 
is predominant in controlling the extent of overstressing around the tunnel and the 
final tunnel convergence. 

The concept of an Equivalent Plastic Zone was introduced to describe the 
extent of yielding around a circular tunnel, reinforced with fully grouted bolts. 
Three stages (categories) of yield propagation have been defined and analyzed with 
respect to the relative location of the plastic zone boundary in contrast to the 
neutral point of zero shear stress on the bolt. A friction factor, λ, has been 
introduced as a characteristic parameter for the bolt-ground composite interaction. 

The mathematical treatment of the elasto-plastic analysis has been based on 
several simplifying assumptions. A circular opening reinforced with an axi-
symmetric bolt pattern, excavated in an isotropic, homogeneous medium, subjected 
to a hydrostatic field stress has been taken into consideration. However, in order to 
solve the differential equations of incremental plastic strain the use of numerical 
methods has been adopted. The Equivalent Plastic Zone, as a result, determined by 
the analytical solution is axi-symmetric or circular in shape. Therefore, the 
accuracy of the proposed analytical solution becomes questionable as the 
complexity of the geological conditions and geometry increases.  

Since the behaviour of the rock mass is modelled, in this study, by either 
elastic-perfectly plastic or elastic-brittle-plastic behaviour with a corresponding 
non-linear Hoek & Brown failure criterion, the rock materials obeying this 
behaviour are believed to be modelled more accurately and realistically that those 
analytical solutions based on linear Mohr-Coulomb failure criterion. However, for 
future study, it is suggested extending this solution to rock material following the 
strain-softening behaviours. 

Since the proposed analytical solution is valid for isotropic medium, it can 
also be used for fractured and heavy jointed rock mass dominated at least by four 
sets of discontinuities. Therefore, for rock masses with presence of a considerable 
discontinuity or fewer than four discontinuities the proposed analytical solution 
cannot be used.   

The influence of time-dependent material properties on ground convergence 
has not been investigated in this study. Time-dependent loosening can be critical if 
an opening is left unsupported for a considerable period of time. However, time 
dependent convergence of a tunnel opening can be minimized by the provision of 
supports at the face, immediately after excavation. Therefore, it may be deduced 
that the theoretical convergence predictions are realistic, if fully grouted bolts are 
installed soon after excavation. In this respect, the primary NATM design objective 
is also acknowledged. 

The rational approach for the design of fully grouted bolts for underground 
excavations in yielding rock presented in this thesis clearly illustrates the capability 
of the fully grouted bolts in controlling rock mass displacements.  
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Implications on the advancing tunnel face 

The proposed analytical solution predicts the ultimate convergence (more 
than two tunnel diameter behind the face). 3-D effects close to the face have been 
neglected. Therefore, the convergence ratio and the bolt effectiveness introduced in 
this analysis are related to a 2-D solution. In reality, the observed convergence (ur) 
is affected by the face effects, and is generally less than the predicted total 
convergence (ut) by the amount of displacement (ui) which occurs ahead of the face 
or prior to initial measurement.  

Panet & Guenot (1982) have presented numerical analyses of the advancing 
face effect (k=1) for circular tunnels driven through elasto-plastic material. In their 
solutions, the prediction of the convergence profile behind the face requires a 
preliminary assessment of the ultimate time-independent closure and the final 
extent of the plastic zone. The final convergence of the numerical axi-symmetric 
model of the tunnel, whose properties outlined in Table 1-2, has been quite close to 
result of proposed analytical solution. As can be seen from Figure 1-19 the 
displacement at tunnel face is 30 % of final displacement. Alternatively, several in-
situ convergence measurements behind the face may be utilized for the purpose of 
semi-empirical solution. However, the ultimate convergence and the corresponding 
plastic zone radius for both unsupported and reinforced openings can be 
determined by the analytical solution proposed in this thesis. Consequently, the 3-D 
convergence response near the tunnel face may be extrapolated from the ultimate 
time-independent behaviour. 
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APPENDIX A 

NUMERICAL INTEGRATION METHOD USED IN 
ELASTO-PLASTIC SOLUTION 

 

 

In order to evaluate the integration stems from the solution of the 
differential equation of plastic strain (Equation 5-46), the use of one of numerical 
solutions has been realized to be rational. The Simpsom’s rule is chosen to solve 
the integration approximately. The integration which must be solved numerically 
is:  
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The Fundamental Theorem of Calculus gives us an exact formula for 
computing a

bf(x) dx, provided we can find an antiderivative for f. This method of 
evaluating definite integrals is called the analytic method. However, there are 
times when this is difficult or impossible. In these cases, it is usually good enough 
to find an approximate or numerical solution, and there are some very 
straightforward ways to do this.  

The simplest numerical approximations to the integral are the left and right 
Riemann sums. More efficient approximations are the trapezoidal and Simpson 
approximations.  

Simpson's rule is a Newton-Cotes formula for approximating the integral of 
a function f using quadratic polynomials (i.e., parabolic arcs instead of the straight 
line segments used in the trapezoidal rule). Simpson's rule can be derived by 
integrating a third-order Lagrange interpolating polynomial fit to the function at 
three equally spaced points. We start by partitioning [a, b] into intervals all of the 
same width, but this time we must use an even number of intervals, so n will be 
even.  In particular, let the function f be tabulated at points x0, x1, and x2 equally 

spaced by distance
n

ab )( − , and denote )( nn xff = . Then Simpson's rule states that 

if n is even then 
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Figure A-0-1 The function f(x) (in blue) is approximated by a quadratic function P(x) 
(in green). 

As with the trapezoid rule, we want to approximate the areas in each strip by 
something more complicated than a rectangle. This time we take the strips in pairs 
(which is why we need an even number of them) and draw a parabola through the 
three points (xk-1, f(xk-1)), (xk, f(xk)), and (xk+1, f(xk+1)), as shown in the Figure 
A-0-1. It is then not too difficult to find the equation of this parabola (it has the 
form y = Ax2+Bx+C), and from that to find the area underneath by integrating. The 
remarkably simple answer is: 

Area under parabola P (x) = [ ])()(4)(
3 11 +− ++
−

kkk xfxfxf
n
ab

                    (A- 4) 

When we add the area under the parabola over the first two strips to the area 
under the parabola over the 3rd and 4th strips, and so on, we get Simpson's rule.  

Considering the parameters included in Table 1-2, the approximate result of 
the integration A-1 used in elasto-plastic solution will be 0.84451. 
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APPENDIX B 

SPREADSHEET IMPLEMENTATION OF THE 
PROPOSED ANALYTICAL SOLUTION 

Input and Output
ri(m) 2 Stresses analysis
Po (MPa) 15 Stress in plastic zone Strains and displacements Analysis
E(Gpa) 5.7 G(Mpa) 2192.30769 Strains in elastic zone
n 0.3 k(Mpa) 4750 εr -1.05E-02
σci 30 ε? 1.32E-02
y 0 σ? (MPa) 1.30766968
mb 1.7 M 2.96E-01
s 3.90E-03 σre(MPa) 6.12E+00
mb' 0.85 Strains in plastic zone
s' 1.90E-03 Ω 0.057 εre -8.95E-05
a 0.5 σr(MPa) 0.0000 ε?e 2.09E-04
S 1 re(m) 4.83361934
σci' 30 Brown BC
r(m) 2 ε?p 1.40E-02
a' 0.5 Stress in elastic zone εrp
Ny 1.0 σ? (MPa) 66.8779697
λ(integrand) 0.73202 σr(MPa) -36.8779697
Pi(Mpa) 0.00 εrt -8.95E-05
γ(MN/m3) 2.40E-02 ε?t 1.42E-02
Maximum radial distance (to plot results)
Rmax [m]: 10 (Rmax)
Grouted Rock bolt Effect
λ 0.6 β 0.121
d (mm) 32.00 mb* 0.953
Cb (kN) 280.00 σci* 33.619
St (m) 1.00 s* 2.129E-03
Sl (m) 1.00
Lb (m) 3.00 mb1 0.747
ρ(m) 3.27 σci1 26.381

s1 1.671E-03

elastic 
strains

plastic 
strains

total strains

Middle East Technical 
University

Elastic-Brittle-Plastic analysis for circular tunnels 
in Hoek & Brown media [ undertaken in Torino 

27 06 2006]
Politecnico di Torino
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Unsupported Tunnel case

 Boundary conditions 
ur1 [m]: 0.00979127
ur1P [m]: 0.0098

 Solution for the elastic region
point r [m] rho sigr [MPa] sigt [MPa] ur [m]

1 10.0000 2.069 12.9249 17.0751 0.0047
2 9.7281 2.013 12.8073 17.1927 0.0049
3 9.4562 1.956 12.6793 17.3207 0.0050
4 9.1843 1.900 12.5399 17.4601 0.0052
5 8.9123 1.844 12.3875 17.6125 0.0053
6 8.6404 1.788 12.2205 17.7795 0.0055
7 8.3685 1.731 12.0369 17.9631 0.0057
8 8.0966 1.675 11.8345 18.1655 0.0058
9 7.8247 1.619 11.6107 18.3893 0.0060
10 7.5528 1.563 11.3623 18.6377 0.0063
11 7.2809 1.506 11.0855 18.9145 0.0065
12 7.0089 1.450 10.7759 19.2241 0.0068
13 6.7370 1.394 10.4280 19.5720 0.0070
14 6.4651 1.338 10.0353 19.9647 0.0073
15 6.1932 1.281 9.5898 20.4102 0.0076
16 5.9213 1.225 9.0815 20.9185 0.0080
17 5.6494 1.169 8.4980 21.5020 0.0084
18 5.3774 1.113 7.8239 22.1761 0.0088
19 5.1055 1.056 7.0391 22.9609 0.0093
20 4.8336 1.000 6.1183 23.8817 0.0098

(pt_E) (r_E) (rho_E) (sigr_E) (sigt_E) (ur_E)

 Solution for the plastic region 
point r [m] rho sigr [MPa] sigt [MPa] Ω λ(integrand) ur [m]

1 4.8336 1.0000 6.1183 18.6771 5.2575 0.0000 0.0098
2 4.6845 0.9691 5.7309 17.8902 4.9283 0.0614 0.0103
3 4.5353 0.9383 5.3442 17.0910 4.5996 0.1209 0.0107
4 4.3862 0.9074 4.9585 16.2790 4.2718 0.1782 0.0113
5 4.2371 0.8766 4.5746 15.4540 3.9454 0.2334 0.0118
6 4.0879 0.8457 4.1929 14.6154 3.6210 0.2864 0.0124
7 3.9388 0.8149 3.8144 13.7631 3.2992 0.3370 0.0130
8 3.7897 0.7840 3.4399 12.8964 2.9809 0.3852 0.0137
9 3.6405 0.7532 3.0705 12.0151 2.6669 0.4310 0.0144
10 3.4914 0.7223 2.7075 11.1188 2.3583 0.4741 0.0151
11 3.3422 0.6915 2.3524 10.2071 2.0566 0.5146 0.0159
12 3.1931 0.6606 2.0071 9.2799 1.7631 0.5522 0.0168
13 3.0440 0.6297 1.6739 8.3367 1.4798 0.5868 0.0178
14 2.8948 0.5989 1.3552 7.3776 1.2090 0.6184 0.0188
15 2.7457 0.5680 1.0545 6.4025 0.9534 0.6467 0.0200
16 2.5966 0.5372 0.7757 5.4116 0.7164 0.6715 0.0212
17 2.4474 0.5063 0.5238 4.4055 0.5023 0.6927 0.0226
18 2.2983 0.4755 0.3050 3.3850 0.3162 0.7100 0.0242
19 2.1491 0.4446 0.1270 2.3517 0.1650 0.7232 0.0259
20 2.0000 0.4138 0.0000 1.3077 0.0570 0.7320 0.0279
(pt_P) (r_P) (rho_P) (sigr_P) (sigt_P) (c_k1) (ur_P)
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Grouted Bolts Effect Min.Yielding

 Boundary conditions 
ur1 [m]: 0.008861415
ur1P [m]: 0.0089

 Solution for the elastic region
point r [m] rho sigr [MPa] sigt [MPa] ur [m]

1 10.0000 2.286 13.3003 16.6997 0.0039
2 9.7039 2.218 13.1950 16.8050 0.0040
3 9.4079 2.151 13.0796 16.9204 0.0041
4 9.1118 2.083 12.9528 17.0472 0.0043
5 8.8157 2.015 12.8130 17.1870 0.0044
6 8.5196 1.948 12.6583 17.3417 0.0046
7 8.2236 1.880 12.4867 17.5133 0.0047
8 7.9275 1.812 12.2954 17.7046 0.0049
9 7.6314 1.744 12.0815 17.9185 0.0051
10 7.3353 1.677 11.8411 18.1589 0.0053
11 7.0393 1.609 11.5698 18.4302 0.0055
12 6.7432 1.541 11.2620 18.7380 0.0057
13 6.4471 1.474 10.9108 19.0892 0.0060
14 6.1510 1.406 10.5076 19.4924 0.0063
15 5.8550 1.338 10.0418 19.9582 0.0066
16 5.5589 1.271 9.4996 20.5004 0.0070
17 5.2628 1.203 8.8633 21.1367 0.0074
18 4.9667 1.135 8.1098 21.8902 0.0078
19 4.6707 1.068 7.2086 22.7914 0.0083
20 4.3746 1.000 6.1183 23.8817 0.0089

(pt_E) (r_E) (rho_E) (sigr_E) (sigt_E) (ur_E)

 Solution for the plastic region 
point r [m] rho sigr [MPa] sigt [MPa] Ω λ(integrand) ur [m]

1 4.3746 1.0000 6.1183 18.6771 5.8995 0.0000 0.0089
2 4.2496 0.9714 5.7168 17.8612 5.5171 0.0463 0.0092
3 4.1246 0.9429 5.3174 17.0350 5.1366 0.0909 0.0097
4 3.9996 0.9143 4.9206 16.1983 4.7587 0.1340 0.0101
5 3.8747 0.8857 4.5272 15.3509 4.3839 0.1754 0.0105
6 3.7497 0.8572 4.1377 14.4925 4.0129 0.2152 0.0110
7 3.6247 0.8286 3.7532 13.6232 3.6467 0.2531 0.0115
8 3.4997 0.8000 3.3745 12.7426 3.2860 0.2892 0.0120
9 3.3748 0.7714 3.0029 11.8508 2.9320 0.3234 0.0126
10 3.2498 0.7429 2.6397 10.9476 2.5860 0.3556 0.0132
11 3.1248 0.7143 2.2863 10.0330 2.2494 0.3858 0.0138
12 2.9998 0.6857 1.9447 9.1071 1.9240 0.4139 0.0145
13 2.8748 0.6572 1.6170 8.1700 1.6118 0.4398 0.0153
14 2.7499 0.6286 1.3056 7.2219 1.3152 0.4633 0.0161
15 2.6249 0.6000 1.0136 6.2631 1.0371 0.4845 0.0169
16 2.4999 0.5715 0.7446 5.2941 0.7809 0.5031 0.0178
17 2.3749 0.5429 0.5029 4.3153 0.5506 0.5190 0.0189
18 2.2500 0.5143 0.2937 3.3268 0.3514 0.5322 0.0200
19 2.1250 0.4858 0.1234 2.3275 0.1892 0.5424 0.0212
20 2.0000 0.4572 0.0000 1.3077 0.0716 0.5494 0.0226

(pt_P) (r_P) (rho_P) (sigr_P) (sigt_P) (c_k1) (ur_P)  
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Grouted Bolts Effect Major.Yielding

 Boundary conditions 
ur1 [m]: 0.009601653
ur1P [m]: 0.0096

 Solution for the elastic region
point r [m] rho sigr [MPa] sigt [MPa] ur [m]

1 10.0000 2.110 13.0045 16.9955 0.0046
2 9.7232 2.051 12.8892 17.1108 0.0047
3 9.4463 1.993 12.7637 17.2363 0.0048
4 9.1695 1.934 12.6266 17.3734 0.0050
5 8.8926 1.876 12.4765 17.5235 0.0051
6 8.6158 1.818 12.3118 17.6882 0.0053
7 8.3390 1.759 12.1303 17.8697 0.0055
8 8.0621 1.701 11.9299 18.0701 0.0056
9 7.7853 1.642 11.7076 18.2924 0.0058
10 7.5084 1.584 11.4604 18.5396 0.0061
11 7.2316 1.526 11.1842 18.8158 0.0063
12 6.9547 1.467 10.8743 19.1257 0.0065
13 6.6779 1.409 10.5252 19.4748 0.0068
14 6.4011 1.350 10.1297 19.8703 0.0071
15 6.1242 1.292 9.6795 20.3205 0.0074
16 5.8474 1.234 9.1637 20.8363 0.0078
17 5.5705 1.175 8.5692 21.4308 0.0082
18 5.2937 1.117 7.8790 22.1210 0.0086
19 5.0169 1.058 7.0714 22.9286 0.0091
20 4.7400 1.000 6.1183 23.8817 0.0096

(pt_E) (r_E) (rho_E) (sigr_E) (sigt_E) (ur_E)

 Solution for the plastic region 
point r [m] rho sigr [MPa] sigt [MPa] Ω λ(integrand) ur [m]

1 4.7400 1.0000 6.1183 18.6771 5.8995 0.0000 0.0096
2 4.5958 0.9696 5.7168 17.8612 5.5171 0.0582 0.0101
3 4.4516 0.9392 5.3174 17.0350 5.1366 0.1145 0.0105
4 4.3074 0.9087 4.9206 16.1983 4.7587 0.1689 0.0110
5 4.1632 0.8783 4.5272 15.3509 4.3839 0.2211 0.0115
6 4.0190 0.8479 4.1377 14.4925 4.0129 0.2713 0.0121
7 3.8747 0.8175 3.7532 13.6232 3.6467 0.3192 0.0127
8 3.7305 0.7870 3.3745 12.7426 3.2860 0.3649 0.0133
9 3.5863 0.7566 3.0029 11.8508 2.9320 0.4082 0.0140
10 3.4421 0.7262 2.6397 10.9476 2.5860 0.4490 0.0147
11 3.2979 0.6958 2.2863 10.0330 2.2494 0.4873 0.0155
12 3.1537 0.6653 1.9447 9.1071 1.9240 0.5228 0.0164
13 3.0095 0.6349 1.6170 8.1700 1.6118 0.5556 0.0173
14 2.8653 0.6045 1.3056 7.2219 1.3152 0.5855 0.0183
15 2.7211 0.5741 1.0136 6.2631 1.0371 0.6122 0.0193
16 2.5768 0.5436 0.7446 5.2941 0.7809 0.6357 0.0205
17 2.4326 0.5132 0.5029 4.3153 0.5506 0.6558 0.0218
18 2.2884 0.4828 0.2937 3.3268 0.3514 0.6722 0.0233
19 2.1442 0.4524 0.1234 2.3275 0.1892 0.6848 0.0249
20 2.0000 0.4219 0.0000 1.3077 0.0716 0.6932 0.0268

(pt_P) (r_P) (rho_P) (sigr_P) (sigt_P) (c_k1) (ur_P)  
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Grouted Bolts Effect Exceeding.Yielding

 Boundary conditions 
ur1 [m]: 0.009663988
ur1P [m]: 0.0100

 Solution for the elastic region
point r [m] rho sigr [MPa] sigt [MPa] ur [m]

1 10.0000 2.096 12.9785 17.0215 0.0046
2 9.7248 2.038 12.8624 17.1376 0.0047
3 9.4496 1.981 12.7361 17.2639 0.0049
4 9.1743 1.923 12.5982 17.4018 0.0050
5 8.8991 1.865 12.4474 17.5526 0.0052
6 8.6239 1.808 12.2819 17.7181 0.0053
7 8.3487 1.750 12.0997 17.9003 0.0055
8 8.0734 1.692 11.8986 18.1014 0.0057
9 7.7982 1.635 11.6758 18.3242 0.0059

10 7.5230 1.577 11.4281 18.5719 0.0061
11 7.2478 1.519 11.1517 18.8483 0.0064
12 6.9726 1.462 10.8419 19.1581 0.0066
13 6.6973 1.404 10.4931 19.5069 0.0069
14 6.4221 1.346 10.0986 19.9014 0.0072
15 6.1469 1.288 9.6498 20.3502 0.0075
16 5.8717 1.231 9.1365 20.8635 0.0079
17 5.5965 1.173 8.5457 21.4543 0.0082
18 5.3212 1.115 7.8607 22.1393 0.0087
19 5.0460 1.058 7.0607 22.9393 0.0091
20 4.7708 1.000 6.1183 23.8817 0.0097

(pt_E) (r_E) (rho_E) (sigr_E) (sigt_E) (ur_E)

 Solution for the plastic region 
point r [m] rho sigr [MPa] sigt [MPa] Ω λ(integrand) ur [m]

1 4.7708 1.0000 6.1183 18.6771 5.8995 0.1565 0.0100
2 4.6250 0.9694 5.7168 17.8612 5.5171 0.2027 0.0105
3 4.4791 0.9389 5.3174 17.0350 5.1366 0.2474 0.0109
4 4.3333 0.9083 4.9206 16.1983 4.7587 0.2905 0.0114
5 4.1875 0.8777 4.5272 15.3509 4.3839 0.3319 0.0119
6 4.0416 0.8472 4.1377 14.4925 4.0129 0.3716 0.0125
7 3.8958 0.8166 3.7532 13.6232 3.6467 0.4096 0.0131
8 3.7500 0.7860 3.3745 12.7426 3.2860 0.4457 0.0137
9 3.6041 0.7555 3.0029 11.8508 2.9320 0.4799 0.0143

10 3.4583 0.7249 2.6397 10.9476 2.5860 0.5121 0.0151
11 3.3125 0.6943 2.2863 10.0330 2.2494 0.5423 0.0158
12 3.1666 0.6638 1.9447 9.1071 1.9240 0.5704 0.0167
13 3.0208 0.6332 1.6170 8.1700 1.6118 0.5962 0.0176
14 2.8750 0.6026 1.3056 7.2219 1.3152 0.6198 0.0185
15 2.7292 0.5721 1.0136 6.2631 1.0371 0.6409 0.0196
16 2.5833 0.5415 0.7446 5.2941 0.7809 0.6595 0.0208
17 2.4375 0.5109 0.5029 4.3153 0.5506 0.6755 0.0221
18 2.2917 0.4804 0.2937 3.3268 0.3514 0.6886 0.0236
19 2.1458 0.4498 0.1234 2.3275 0.1892 0.6988 0.0253
20 2.0000 0.4192 0.0000 1.3077 0.0716 0.7059 0.0272

(pt_P) (r_P) (rho_P) (sigr_P) (sigt_P) (c_k1) (ur_P)  
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Case  I. re*<ρ< (a+L)    minimal yielding
Pi Effect

Y 0.783 0.783
re* 4.375 4.375

Case  II. ρ<re*< (a+L)   major yielding

Г* 0.079
σρ 2.710
h 0.493
J 0.370
re* 4.740

Case III. re*>(a+L)   excessive yielding

Г* 0.079
σρ 2.710
h 0.493
ξ 5.068
σL 6.722
t 0.423
q -0.047
re* 4.771

 

Lb 

? 

t z 

ri re*  

Minimal yielding 
 
re* < ? < (ri +Lb) 
 

Major yielding 
 
? < re*< (ri +Lb) 

Excessive yielding 
 
re*> (ri +Lb) 

 
 


