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ANALYTICAL DESIGN OF  
ROCK-BOLT SYSTEMS 

 
                                                                        “Imagination is more 
                                                                                             important than knowledge” 
                                                                                                      Albert Einstein 
 
1.INTRODUCTION 
   Some forty years ago, most opening supports and reinforcements were designed using 

empirical rules defining ground loads acting on the supporting structures. This approach is 

still popular and interest in it has been renewed by the use of rock mass classification systems 

(Barton et al. 1974, Bieniawski, 1974,1976,1989). Correlations between rock mass conditions 

and the type of support used are based on case histories. This approach perpetuates existing 

practice, even if over-conservative or unsatisfactory. 

   Most recent underground excavation design relies on more elaborate analysis of the 

complex rock –support interaction. Moreover, the effect of geometry of opening has to be 

allowed for. A new concept of RRE (Rock-mass, Rock-bolt, Excavation) which will be 

developed in thesis, is intended to cover all parameters involving in design of a proper 

reinforcement system. This concept must take into account not only the properties of rock 

mass, but also the structure behavior of the reinforcing structure (element) and the opening 

geometry. Stresses and displacements in the rock mass surrounding openings depend upon the 

rock mass properties, the in-situ initial stress field, opening shape, and the type (stiffness) of 
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the support and the time of its installation. In this study, the time –independent effect is 

disregarded.  

   A complete analysis requires a larger amount of data and information, which may be taken 

into account by numerical modeling. However, in most cases it is difficult to obtain all 

necessary data before construction. Many of the parameters that influence the analysis are ill-

defined and, up to now, no perfect constitutive model has been shown to be successful at 

simulating all the aspects of rock behavior important to design of reinforcement systems for 

underground excavations. Some rock properties may only be evaluated by back-analyzing 

field data. 

   A good understanding of the deformations (the most dangerous phenomenon) caused by an 

underground opening requires simultaneously knowledge of the rock-support interaction and 

interpretation of field data. Assessing the stress acting on reinforcement system as well as 

displacements occurring during and after construction is the main purpose of analytical 

methods in designing a proper reinforcement system for defined opening. The measurement of 

the wall’s displacements, commonly called “ convergence” is indeed the one most used on a 

opening site. 

    
2.GENERAL REMARK 
    In this stage of design of rock-bolt systems, an extensive literature survey conjunction with 

analytical models of passive rock-bolts is fully discussed. To date, a large number of 

analytical solutions have been obtained for rock-bolt design. It is clear that rock mass 

reinforcement techniques, such as by means of fully grouted bolts or cables, have been 

applied to openings, but theoretical problems have been encountered in the design of this 

reinforcement scheme with analytical axisymmetric models due to the difficulty of 

considering the influence of the passive bolt and the rock mass rock-bolt interaction (RR from 

RRE concept). Analytical axisymmetric models that can define the stresses and deformation 

induced by excavation (convergence-confinement method) are widely used in the design of 

excavation and reinforcement system due to the computational simplicity. Many analytical 

formulations for the calculation of the ground characteristics curve have been developed and a 

number of models, based on either the Mohr-Coulomb or the Hoek-Brown strength criterion 

with elastic-plastic or elastic-brittle plastic stress-strain behavior have been adopted. Some 

models with a strain softening behavior with non-linear strength criteria, and associated or 

non-associated flow rules have also been presented. 
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Table 1.Material (rock mass) behavior models used in rock-bolt design. 

Author / Year Strength/Yield 
Criterion 

Stress-Strain 
Model 

Treatment of plastic 
volumetric strains 

Indraratna & 
Kaiser 

1987,1990 

Mohr-Coulomb 
(linear) 

elastic-brittle 
plastic 

non-associated flow rule

Peila & Oreste 
1995,1996,1997, 

2003 

Hoek & Brown 
(non-linear) 

strain-
softening 

associated flow rule 
applied over limited 

range of post peak strain

Hoek & Brown 
1980,1983 

Hoek & 
Brown(non-

linear) 

elastic-brittle 
plastic 

associated flow rule 
applied over limited 

range of post peak strain

Stille et al. 
1983,1989 

Mohr-Coulomb 
(linear) 

elastic-brittle 
plastic 

non-associated flow rule 
dilatancy after failure 

 
   In order to better understand of rock-bolt and rock mass interaction (RR of RRE Concept), it 

is essential to get a good sense of material (rock) behavior, by means of which some important 

analytical design approaches have been developed (see Tabale1). The material behavior 

models used in analytical solution of rock-bolt design are illustrated in the Figure1 and 2. 

 

Figure1. Material behavior model in the case of  

Elastic-brittle plastic (after Brown et al. 1983). 

Figure2. Material behavior model in the case of the 

strain -softening (after Brown et al. 1983). 
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   In general, rock reinforcement with different types of rock-bolts can be assessed with 

analytical solutions based on the theories of the ground reaction curve (Hoek & Brown, 1980, 

Brown et al. 1983, Stille et al.1989, Oreste & Peila, 1995,1996,1997,2003).  

   The arising deformations and stresses around an excavation in rock are a result from the 

interaction between rock mass and rock support. Analytical solution can be achieved under 

certain conditions. The problem is often solved for a circular opening in a hydrostatic stress 

field and presented in a ground-support interaction diagram with the ground reaction curve 

and the reaction line of the support (see Figure 3).  

 
 

        
Figure 3. The convergence–confinement method. 
Key: p: internal opening pressure; u: radial 
displacement of the wall (positive towards the 

opening axis); po : in situ hydrostatic stress; peq : 
pressure acting on the support structure; pmax : 
pressure that induces the plastic failure of the 
structure (support capacity); k: support stiffness; 
uin : displacement of the wall before support 
installation; ueq : displacement at equilibrium; uel : 
displacement of the wall on reaching the elastic el 
limit in the support; umax : displacement of the wall 
on collapse of the max support; and A: equilibrium 
point of the opening-support system. 

 

   Many approaches to the calculation of the ground reaction curves for different types of rock 

mass behavior (see Table 1) have been reported in the literature. Brown, Bray, Ladanyi and 

Hoek (1983) have compiled a comprehensive report on the subject. They presented a stepwise 

method based on finite difference method of solving the partial differential equation for strain 

softening behavior of rock mass apart from normal method, which had been introduced earlier 

(Hoek & Brown, 1980). 

   Here let’s briefly argue about grouted (in general name friction bolt) and prestressed types 

of bolt, which have been recently a debatable subject. The reaction line of a rock support with 

anchor bolts has been presented elsewhere(Hoek and Brwon 1980, Oreste 2003). The anchor 

bolt is connected to the rock in the anchoring zone and at the anchor head. Between these two 

connection points the rock is free to deform independently of the bolt. The most common 

anchor types are mechanical, cement grout, and chemical. The load in the rock-bolt is 

transferred to the opening surface at the anchor head through a nut and a washer plate. 

  The reaction line for a support with anchor bolts cannot be used for grouted bolts since the 

grouted bolts don’t act independently of the rock. The deformations in the rock cannot be 

separated from the deformations in the bolt since the bolt and rock is grouted together. In such 
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a cases the bolts will interact with the rock and influence the ground reaction curve of the rock 

mass. 

   Over the years, on the other hand, there has been much debate as to whether tensioned bolts 

or untensioned grouted bolts are more suitable for stabilizing rock openings. The question of 

whether to use tensioned bolts or untensioned grouted bolts is not of minor importance. 

Except from economic point of view, tensioned bolts are commonly used all over the world 

with the explanation that they are recommended in the empirical design method and will give 

the most efficient. It is doubtful whether this will in fact be achieved. The Q-system (Barton et 

al. 1974), for example, is such as an empirical method based on roughly 200 case records and 

therefore can be conservative. It reflects traditional support methods for advanced opening 

construction technique, which are not always the optimal ones. The Q-system recommends 

mainly the use of tensioned bolts for poorer rock qualities and untensioned bolts only for good 

and very good rock. 

   On the other side, in the Q-system, for many ground categories, particularly in poor, 

yielding rock it does not generally recommend the installation of untensioned grouted bolt or 

sweelex bolt. Therefore, it is not meaningful to compare the proposed analytical approached 

with the Q-system. The geomechanical classification or rock mass rating (RMR) developed by 

Bieniawski (1974,1979,1989) is, however, applicable to fully grouted bolts in all types of 

rock; accordingly: the analytical approaches in some cases can be compared with empirical 

reinforcement design. 

   Swidesh experience of rock-bolting today is that almost without exception untentioned 

grouted bolts and swellex bolts are utilized for every type of rock condition. Some technical 

report conducted by others in Sweden underlined the good experience from support systems 

using untensioned grouted bolts and shotcrete in poorer rock. Therefore, the behavior of 

grouted bolts as well as swellex bolts will mainly be analyzed in the thesis. 

   In the following, four constitutive models developed for the design of rock-bolt system 

based on analytical methods will be discussed. In is of great importance to utterly acquaint 

with those models involving the rock-bolts, rock mass interaction. 

 

3. AXISYMMERTIC OPENING PROBLEM 

   Many authors have calculated the ground reaction curve of the rock mass for different 

failure criteria of the rock (Brown et al. 1983). For an elastic- brittle-plastic rock mass 

material with a Coulomb’s failure criterion for both the peak and residual strength and a non-
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associated flow rule in which post-peak dilatancy occurs at a constant rate with major 

principal strain, the following solutions of the ground reaction curve will be achieved. This 

solution has been employed both Stille et al. (1983,1989) and Indraratna & Kaiser 

(1987,1990) (see Figure 4). 

 

The stress-strain relation of the rock mass 

is illustrated in Fig.1. In the plastic 

(yielding or broken) zone nearest to the 

opening surface of the    
Figure4.The axisymmertic opening problem 

circular opening the following tangential 

stresses, σt, and radial stresses, σr, will 

occur: 
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   cr= residual value of the cohesion, 

   φr= residual value of the friction angle, 

   ri= radius of opening, 

   pi= outward radial pressure on the 

opening surface. 

 

The boundary, re, between the zones of plastic and elastic behavior can for a rock mass with 

initial state of stress po be calculated with the following expression: 
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Above equation can also define the extent of the yielding zone where: 
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c= cohesion, 

φ= friction angle. 

The stress outside the plastic zone (i.e. elastic zone), r>re, can be achieved with the following 

equations: 
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σre is the radial stress at the elastic-plastic boundary. 

The deformations of the opening surface, ui, can be computed as: 
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and 

E= Young’s (elasticity) modulus of rock mass 

ν=Poisson’s ratio of rock mass, 

po= in-situ stress 

the factor f expresses the volume expansion after failure and is given by: 
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where ψ= dilatancy angle. 
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Equation (7) is derived from the approximation that the rock mass is subjected to elastic 

strains in the plastic zone that are constant and equal to the elastic strains at the boundary 

between the zones of plastic and elastic behavior. 

 

4.FLOW RULE OF PLASTICITY CONCEPT 

    No analytical model cannot introduce the real interaction between rock–bolt and rock mass 

around a opening provided that the real behavior of them is realized. At the failure point and 

post –peak behavior of a rock, it is important to determine the post-peak parameters of rock 

due to their applicability the analysis of the broken zone deduced as well as reinforced rock 

mass. Flow rule is recognized to be a tool, whereby; post peak parameters of rock can be 

determined based on selective yield condition. In what follows, we will assume that elastic 

stress increments have been computed and that both yield conditions are exceeded; later on, 

the condition for separate yielding will be given. The usual assumption is made that the 

overall strain increment of an element can be decomposed into elastic and plastic parts and, 

further, it is assumed that the plastic contributions of shear and volumetric yielding are 

additive. The principal axes of both plastic and elastic strain increment are taken to be coaxial 

with the principal axes of stress (only valid if elastic shear strains are small compared to 

plastic strains); the strain increments obtained are: 
pv

i
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Where i=1,3 and superscripts psandpv stand for “plastic shear” and “plastic volume”, 

respectively. The flow rules for shear and volumetric yielding are: 
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    It can be shown that the volumetric flow rule is associated and the shear flow rule is non-

associated. The plastic potential for shear yielding is: 

 

ψψσσ NcNgs 231 +−=    (12) 

where Nψ = (1+sinψ)/(1-sinψ), and 

ψ is the dilatancy angle. 
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   An alternative approach to the use of experimentally determined parameters in defining the 

post-peak volumetric strain is to estimate them using the associated flow rule of the theory of 

plasticity. Hoek and Brown (1980) have previously used this approach in their closed from-

solution. When an associated flow rule applies, the yield criterion and the plastic potential 

function are the same functions of the stress components. In other words, the flow rule is 

referred to as associated if the plastic potential and yield surface coincide. As a consequence 

of this, the plastic strain increment vector must be normal to the yield surface. If the yield 

surface is represented by a relation between principal stresses, σ1 and σ3, then the 

corresponding components of the strain increment vector are the increments of ε1
pand ε3

p. If 

the flow rule is non-associated, the yield criterion and the plastic potential function are not the 

same and the normality principles do not apply. There is limited evidence available to suggest 

that the dilation rate at peak stress in dense brittle rocks or tightly interlocked aggregates can 

be predicted closely using the associated flow rule. It is not clear, however, that the associated 

flow rule applies to heavily fractured and poorly interlocked rock masses. Indeed, analyses of 

data obtained from Brown et al.(1983) suggest that, in some such cases, the flow rule will be 

non-associated. This means that the resulting plastic volume changes will be less than those 

predicted using an associated flow rule. 

    More recently, based on analyses undertaken by Indraratna (1987), a flow rule applicable to 

a linear Mohr-Coulomb failure criterion, has been adopted: 

0=+ pp
r θαεε    (13) 

   The parameter α is the dilation coefficient that characterizes the volume change in the 

plastic zone. Zero volumetric strain (no volume change) is represented by α=1. If α=m, the 

associated flow rule is obtained for a Mohr-Coulomb material where m=tan(45+ ϕ/2). For a 

material with a friction angle of 30°, a value 

of α=3 is a upper

   bound. The associated low assumes that 

the plastic strain increments are normal to 

the failure envelope (2-D problem) 

satisfying normality condition, thereby 

generally overestimates the plastic strains in 

rock. Therefore, a non-associated flow rule 

Figure 5. Mohr-Coulomb linear 

 failure criterion and flow rule 
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(1<α<m) is more realistic, as illustrated by Figure 5.  

 

   A further attention has to be taken in differences between brittle material and plastic 

material (i.e. ideal plastic such as clay). Only for 1<α<3 the non associated flow rule satisfies 

the brittle material because for a brittle rock, α=3 is a upper bound realized by non-associated 

flow rule whereas for α>3 and α=1 a plastic behavior occurs satisfied by a associated flow 

rule. A good definition for these hypotheses was studied by Peila et al. (1995) and Cividini 

(1993).  

                                          

5. ANALYTICAL APPROACHES FOR ROCK-BOLT DESIGN    

   In this part of study, some crucial methods employing analytical methods for rock-bolt 

design conducted by others are extensively argued so that a complete and extensive literature 

on subject will be achieved.  It is so convincing, at this point, that such constitutive models of 

rock-bolt design are mainly divided into two categories based on material behavior model and 

failure criteria. 

                                      PART A: LINEAR CONSTITUTIVE MODEL 

USING NON-ASSOCIATED FLOW RULE AND 

MOHR-COULOMB YIELD CONDITION 

 
5.1. STILLE’S CONSTITUTIVE MODEL 

   Stille et al. (1983,1989) presented a closed-form elastic-plastic solution of grouted bolts by 

considering five different approaches of bolt performance which, even though introducing 

some simplifying assumptions, have proved to be in good agreement with measured data. In 

Stille’s approach, the analysis of ground reaction curve for a rock mass with grouted rock-

bolts is considered. In order to model the rock-bolt and rock mass behavior five following 

categories are taken into account. 

a) Elastic condition 

b) Elastic bolt in a plastic rock mass 

c) Plastic bolt in a plastic rock mass 

d) Plastic deformation of the grouting material 

e) Elastic bolt with nut and end-plate and plastic deformation of the grout material 
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 Elastic condition 

   In the elastic condition grouted bolt improves the rock mass in terms of deformation 

modulus and stiffness. With the condition that the rock and the bolt will have the same strain 

the effective modulus Eeff can be obtained according to the theory of composite material and 

will get the following: 
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s
beff SS

YE
EE

⋅
⋅

+=    (14) 

where Eb and Es are the modulus of the rock mass and steel respectively and Y is bolt area. 

The bolt load T can be calculated from the following system of equations: 

 

r
u

r ∂
∂

−=ε    (15a) 

r
r

p
E

u e
ore

eff

2

)(1
⋅−⋅

+
= σν    (15b) 

rEYT ε⋅⋅=    (15c) 

 

The load will then be: 

YE
r

r
p

E
T s

e
ore

eff

⋅⋅⋅−⋅
+

= 2)()(1 σν    (15d) 

 

 Elastic bolt in a plastic rock mass 

   In the case of the elastic bolt in a plastic rock mass it is assumed that bolt distances are so 

small and rock mass and rock-bolt have the same strain, furthermore the occurrence of a 

tensile load in the bolt will imply a corresponding additional compressive stress in the rock 

mass. Radial stress in the rock mass will then be the sum of the outer stress, σr, and the above 

mentioned additional compressive stress. The equilibrium partial differential equations in the 

polar coordinate will occur: 
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ssE
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T ε=    (19) 

Equation 16 is the condition of equilibrium for an infinitesimal element; equation 18 is the 

Mohr-Coulomb failure criterion for a rock mass with residual values on cohesion and friction 

angle. Equation 19 is the bolt stress from the plastic strain given by: 

elrs εεε −=    (20) 

Where the elastic strain, εel is assumed to be constant in the plastic zone and equal to: 
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Equation 21 is equal to the elastic strain at the boundary, r=re, between the zones of elastic 

and plastic behavior. The radial deformations, ur, and the total radial strain,εr, depend on the 

properties of the rock mass and are obtained from: 
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   By combining equations (20-23) and 19 the bolt load, T, can be eliminated from equation17. 

The stress in the rock,σb, can then be omitted with equation18. Therefore, the tangential 

stress, σt, can be eliminated from equation 16 and the following partial differential equation 

will result: 
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This differential equation will have the following solution: 
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   The C5 can be determined from the boundary condition in the way that the radial 

stress,σr=pi, at the opening surface, r=ri. The radial stress will then be: 
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   The boundary between the zones of elastic and plastic behavior r=re, can then be found 

from the conditions that the radial stress, σr, shall be continuous over the boundary and the 

failure criterion for the peak values are fulfilled. 

   The ratio re/ri or the extent of the yielding can be solved by trial-and –error form: 
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The bolt load can then be obtained from the following equation: 
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where err ≤ . 

The bolt load will be in tension with its maximum tensile load at the opening surface and the 

tensile load will decrease into the rock. This occurrence have been previously proved by 

Freeman 1978,Zhen Yu et all. 1983, and Xueyi 1983. Besides, Indraratna 1990 pointed out 

that by shear stress transmission from the rock to the bolt surface the axial tension would 

occur. 

 

 Plastic bolt in a plastic rock mass 

   If the interaction between the bolts an d the rock mass is ideal and the end plate stiff the 

bolts will be subjected to high loads close to the opening surface. This implies yielding of the 

bolt if the ultimate strength is exceeded. 

Under these conditions two zones will be developed around the opening (see Figure6):     

 

 Plastic rock and elastic bolt, 
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 Plastic rock and plastic bolt. 

 

   In the zone closet to the opening, the stress situation can be derived like the previous 

solution with the exception that the bolt load has to be replaced by ultimate strength of bolt 

(yielding load of bolt) Tmax. 

  As brief, the radial stress can be solved in terms of Tmax: 
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   The extension of the zone with plastic rock and plastic bolt (this zone was named with 

Equivalent Plastic Zone EPZ by Indraratna) can be calculated through the conditions that the 

bolt load and radial stress shall be continuous over the boundary r=rp. In the zone with plastic 

rock and elastic bolt, equations (26-28) are valid if ri is replaced by rp and pi with σrp. The 

values of re and rp can then be calculated by trial and error with the following equations: 
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 Plastic deformation of the grouting material 

   Common types of grouted bolt are not equipped with a special anchor head. For this types of 

bolt the bolt load will be zero at the opening face and increase inwards. The plastic 

deformations of the rock mass will be largest close to the opening surface and the shear 

strength of the grouting may be exceeded, in which case sliding will occur. The bond between 

Figure 6. Rock and bolt conditions in the rock mass 
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the bolt and the rock mass is considered to be plastic and only transfer a constant shear load 

per unit length, τ, to the bolt. If it is then assumed that the shear load can be equally 

distributed out into the rock mass, the following equations are obtained: 

lc

ir
rt SS

r
r

r
τσ

σσ −=
∂
∂

−−    (32) 
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σ
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)( irrT −−= τ    (33) 

   The load in the bolt will increase linearly from zero value at the opening face. the shear 

load, τ, transferred from the bolt can be interpreted as a volume load radial directed out from 

the opening. The stresses acting on the rock, σb, will not be influenced by the bolt load,T, but 

indirectly by the shear load. The only connection between the rock and the bolt is the shear 

load and not the total bolt load. The radial stress, σr, wills for this case be the same as the 

stresses acting on the rock mass, σb. The partial differential equation of equilibrium will be 

different from the earlier case since the shear load will influence the equilibrium of a 

infinitesimal element as shown in Figure 7. Under these conditions, two zones will be 

developed surrounding the opening as shown in Figure 8. By combining equations 32 and 18, 

a distinguished differential equation will be established and using the boundary conditions at 

opening face the radial stress will then be: 

 

 

 

 

Figure 7.  Stresses in the bolt and rock at plastic deformation in the grouting 
material (a) Stresses in the bolt. (b) Stresss in the rock.
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    The extension of the zone with plastic rock and plastic bolt (this zone was named with 

Equivalent Plastic Zone EPZ by Indraratna) can be calculated through the conditions that the 

bolt load and radial stress shall be continuous over the boundary r=rp. In the zone with plastic 

rock and elastic bolt, equations (26-28) are valid if ri is replaced by rp and pi with σrp. The 

values of re and rp can then be calculated by trial and error with the following equations: 

)( ipp rrT −−= τ    (35) 
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 Elastic bolt with nut and end-plate and plastic deformation of the grout 
material 

 
For a grouted rock-bolt with a nut and end 

plate, plastic deformation can occur in the 

grouting material before the yield strength 

of the bolt reached, due to low bond 

strength. Sliding in the bond between rock 

and the bolt then starts at the opening 

surface where the grouting material is 

assumed to be in a plastic condition and 

only able to transfer a constant shear load 

Figure 8. Rock and grout conditions in 
the rock mass

Figure 9. Interaction between rock mass and bolt 
with end plate. Local deformations of the rock 
mass under the end plate is shown. 
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between rock mass and bolt. It is 

interesting at this point that the bolt load is 

not zero at the opening surface because of 

the interaction with the end-plate. The 

magnitude of the bolt load at the opening 

surface depends on the bearing capacity of 

the rock mass under the end plate, see; 

Figure 9. 

 

   Similar to previous model, two zones with different conditions in the support and the rock 

will develop (see Figure 8). According to the theory of elasticity and assuming a circularly 

distributed load, the deformation of the rock mass under the end plate is obtained by: 

ED
T

u e
e

)1( 2ν−
=    (38) 

where 

Te= bolt load due to effect of end-plate 

E= Young’s modulus of the rock mass 

D= diameter of the end-plate 

   The deformation in the rock mass under the end plate is also governed by: 

)()( sgrpie uuuuu +−−= ,   (39) 

where 

ui= deformation of rock mass at surface, r=ri, 

up= deformation of rock mass at r=rp, 

ugr= deformation of bolt due to bond load, 

us= deformation of bolt due to loading of end-plate. 

   Rock deformation at the opening surface, ui, and at the boundary between plastic and elastic 

grout, up, is calculated from: 
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where, r=ri and r=rp respectively and A and f are computed by equations (8) and (9). The 

deformation in the bolt is: 

S
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where x=rp-ri 



 18

 

The equilibrium differential equation will be: 
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The solution of above differential equation is like previous case, hence: 
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Where Te is obtained from equations 38 to 42 as: 
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   A hypothetical example is shown to elucidate the different performances of grouted bolt in 

the aforementioned analyses. Figure 10 shows the analytical bolt load distribution curves 

along the bolt according to equations 28,30,35, and 43. The analytic solutions correspond to: 

 

Figure 10. The different analytic bolt load 
distributions of a grouted bolt.
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i. The bolt is in elastic condition and the interaction between rock mass and bolt is ideal. 

The required bond strength, highest close to the opening surface and decreasing 

inwards, is numerically equal to the inclination per unit length of the bolt load curve 

in every point along the bolt. The stiffness of the end plate is infinite. 

ii. In the outer part of the bolt, the yield strength of the bolt is exceeded. The interaction 

between rock mass and bolt is ideal and a perfect plastic behavior of the bolt is 

assumed. 

iii. The bolt is without end-plate and in elastic condition. The shear strength of the 

grouting material is exceeded in the outer part of the bolt. In that zone, the bolt load 

only depends on the residual capacity of the grout to transfer load between rock mass 

and bolt. 

iv. The bolt is in elastic condition. The shear strength of the grouting material is exceeded 

in the outer part of the bolt and the load depends on the local deformations of the rock 

mass under the end plate and the residual capacity of the grout to transfer load 

between rock mass and bolt. The end-plate acts theoretically as a circular spread load. 

 

   Grouted bolts themselves are not considered to establish any radial support pressure, Pi, on 

the rock surface, so equilibrium for the ground reaction curve is reached as for unsupported 

rock when Pi=0. The principal effect of grouted bolts, compared to the unsupported roc mass, 

is that the stability of rock mass is improved as the bolts through tension load influence the 

strength of the rock mass and the volume expansion at failure. In the previous studied 

conducted by Hoek and Brown (1980), these effect of grouted bolts were mentioned, but no 

analytical solution was presented. 

   This analytical solution discussed here, was employed at the Kielder experimental opening 

to be verified. Based on results obtained from both this solution and field measurement, it was 

concluded that there was a good consistency between results( Freeman,1978,Ward et al. 1983) 

 

5.2.INDRARATNA & KAISER CONSTITUTIVE MODEL 

   Indraratna (1987,1988,1989,1990) developed an analytical model which represents the 

behavior of  a reinforced rock mass near a circular underground opening in a homogeneous, 

isotropic and uniform field stress. The theory adopts the concepts of elasto-plasticity and 

considers a proper interaction mechanism between the ground and the grouted (friction) bolts 

to accommodate for the influence of bolt/ground interaction, size of opening and the bolt 
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pattern on yielding  and opening wall displacement. It highlights the influence of bolt pattern 

on the extent of the yield zone and opening deformation in terms of convergence reduction. In 

this model, two appealing dimensionless parameters namely bolt density and normalized 

convergence ratio were defined. It is also so interesting that a new parameter, neutral point of 

bolt, developed by Xueyi (1983) was incorporated into analysis. Such dimensionless 

parameters were considered to incorporate the opening convergence into the bolt pattern for a 

given bolt length. Furthermore, one of the important tasks conducted by Indraaratna (1990) 

was that he incorporated this solution into empirical design approaches (rock mass 

classification systems) especially Bieniawski’s RMR system and acceptable agreement was 

resulted. This constitutive model deals with mainly the effect of bolts on the stress and 

displacement field near an opening. The elasto-plastic model presented in the following 

constitutes an extension of the approach introduced earlier by Kaiser et all.(1985) for the 

purpose of assessing the influence of fully grouted rock-bolts on opening behavior.  

 

5.2.1. Elasto-plastic behavior of model 

   The assumption of homogeneity, isotropy and linear elasticity prior to yielding of the rock 

mass are made to simplify the mathematical treatment. In addition, the existence of a uniform 

field stress can often be justified for deep excavations. Yield initiation is assumed to occur 

following a linear Mohr-Coulomb failure criterion. In particular, near a opening where the 

confining(radial)stress is a minimum, the fracture initiated by a relatively large deviator 

stress(σθ-σr) can be modeled adequately by a linear failure envelope. Owing to the fact that 

some “strain-weaking behavior” is observed in most rocks, this is simulated by an elastic, 

brittle-plastic model which is characterized by an instantaneous strength drop at peak .The 

yield envelope is considered to be linear although the post peak strength is reduced. The 

principal stresses in the plastic or yield zone can be described by: 

cr sm σσσθ +=    (18b) 

where 







 +=

2
45tan 2 φm     0<s<1 

   The parameter s is a measure of the degree of strength loss occurring immediately after the 

peak strength is reached. In uniaxial compression, s is almost zero, whereas it approaches 

unity if the perfectly elasto-plastic state is attained in treaxial compression. 
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   The strains in the plastic zone are the sum of elastic and plastic components. The elastic 

component in the plastic zone has been determined by assuming identical constants to those of 

the elastic rock (E,ν )and by applying Hooke’s laws. The plastic strains are governed by an 

appropriate flow rule postulated for a yielding behavior. Since the extent of yielding is 

dependent on the dilation characteristics of the yielded material, the flow rule must 

accommodate the influence of dilation. A non associated flow rule for this analysis is taken 

into account as discussed in the part 3  . 

 

5.2.2 Neutral point of rock-bolt 

   The shear stress distribution (τz) along a grouted bolt can be represented by (Xueyi, 1983): 

dzddQ zz τπ=−    (48a) 

z

zbz
z d

dr
dz

dQ
d

σ
π

τ ⋅−=⋅−=
2

1   (48b) 

Where bolt diameter d=2 × bolt radius (rb), Qz is the axial load distribution and σz is the axial 

stress distribution along the bolt. 

   The shear stress is related to the first derivative of the axial stress; hence, a zero value of τz 

defined as the neutral point must exist where the axial stress attains a maximum. A model for 

stress distribution associated with grouted bolts has been proposed initially by Freeman, 1978 

based on field measurements from the Kielder experimental opening, and later by Xueyi 1983, 

also based on field observations. This model, illustrated diagrammatically in Figure 11,clearly 

demonstrates the occurrence of the neutral point the location of the maximum axial stress. It 

further exhibits points of inflection on the axial stress distribution associated with the 

Figure 11.  Stress distribution model for grouted bolts (after Xueyi, 1983). 



 22

maximum and minimum of the shear stress distribution, where: 

02

2

==
dz

d
dz

d zz στ    (49) 

   The shear stress distribution is characterized by the division of the bolt into a pick-up length 

and an anchor length, on either side of the neutral point. This is justified mathematically by 

considering the equilibrium of the grouted bolt relative the surrounding rock. The pick-up 

length restrains the ground displacements towards the opening whereas the anchor length is 

restrained by the rock. The equilibrium of the bolt relative to the rock is thereby ensured as a 

result of the shear stresses acting in opposite directions along the pick-up length and anchor 

length, respectively. The relative displacement at the neutral point is essentially zero. Yu and 

Xian (1983) have independently investigated the interaction mechanisms of the fully grouted 

bolts and have provided further theoretical support for the above described model. The 

location of the neutral point along the bolt has been determined by equilibrium considerations, 

and it is given by: 


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
 +

=
)(1ln

a
L

Lρ    (50) 

where L is bolt length and a is opening radius. According to observations, it was seen that ρ~ 

0.45L+a and L~(20-30) d 

   For a axisymmetrical problem and considering  identical bolt with equal spacing along the 

opening axis and around the circumference, the tangential bolt spacing around  the opening is 

defined by the product of the opening radius and the angle between two adjacent bolts(i.e. 

ST=aθ) see Fig12. 

 

5.2.3. General elastic, brittle-plastic model around circular opening  

   This part of study intended to introduced an analytical of circular opening in isotropic, 

elastic- brittle plastic continuum undertaken by Kaiser et al.(1985). Since in the following 

analysis Kaiser’s solution will be a base, it is, hence, necessary to acquaint with that solution. 

 

a) Failure Criterion 

   The linear Mohr-Coulomb criterion is applied with a reduction in post-peak strength, as 

given by the following relationships: 
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cr sm σσσθ +=     (18b)   

 0<s<1 

The parameter s a measure of the degree of strength loss occurring instantaneously after the 

peak (failure) stress. 

 

b) Stress in the yielded zone 

The combination of the equilibrium equation and failure criterion results in the following 

ordinary differential equation: 
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−

+
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   (51) 
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where  
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   The shear stress (τrθ) at any given radial distance is zero for axisymmetric deformation under 

plane strain condition. For an unsupported opening where bolt density parameter (β=0), the 

solutions of Equ.52 are given by: 
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the above solution is the same for both the geomechanical model and the actual excavation. 

 

c) Stresses in the outer elastic zone 

The stress distribution in the elastic zone is equivalent to that of a larger opening of radius R, 

supported by an uniform internal stress σri  under the same external field stress. R is the radial 

distance to the outer limit of the yielding zone surrounding the opening. 

   At the elastic plastic boundary (r=R), the internal stresses are given by: 
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In the elastic zone, the stress distributions are given by: 
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where 

or σσσ θ 2=+    (59) 

 

d) Radius of the yielded zone 

   The plastic zone radius R can be determined by assuming continuity of radial stress at the 

elastic-plastic boundary. It is also assumed that the field boundaries are far enough from the 

opening, such that their influence on the solution on the solution for R is negligible. 

   Equating the expressions for σri at r=R, obtained for the elastic and plastic zones 

respectively, the normalized plastic zone radius (R/a) can be derived as follows: 
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e) Strains in the elastic zone 

   Hook’s laws can be applied to determine the radial and tangential strains in the elastic 

region surrounding the plastic zone. 
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substitution of the expressions for stresses (Equations 57, 58) in the above relationships 

provides the strain fields for the model test under plane strain conditions (γrθ): 
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where σ ri is the radial stress at r=R . The term σo(1-2ν)/2G is the initial elastic deformation of 

the plate without the opening. The other term is the deformation due to excavation. The 

deformation of the laboratory model is the combination of both terms. 

 

f) Strains in the plastic zone 

   The total strains in the plastic zone are made up of both elastic and plastic strains (εt=εe+εp). 

Hook’s law has been applied to calculate the elastic strains, which are given by the following 

expressions: 
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   The continuity of total strains across the elastic-plastic boundary requires a specific 

tangential plastic strain associated with strength loss after peak to occur immediately.          

The magnitude of this plastic strain at r=R is given by: 
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Clearly, the plastic strains become zero at the elastic-plastic for perfectly plastic material with 

s=1. 

Substitution of Equations 65 and 66 and the flow rule (Equ.13) in the total strain compatibility 

condition 
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   The solution of the above equation with the boundary condition stated in Equation 67 is 

given by: 
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and 
pp

r θεαε ⋅−=    (70) 

The addition of the corresponding Equations 65,66 and 69,70 gives the total strains in the 

plastic zone for the boundary conditions of the model test, where: 

εθt = εθe + εθp         and   εr
t = εr

e + εr
p        (71) 

 

g) Radial displacement field  

   The displacement field can be obtained directly by the following strain-displacement 

relationships which satisfy the compatibility conditions: 
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the conditions of plane strain under axisymmetric deformation (γrθ) imply that the total strains 

are independent of the tangential strain components. Therefore, the radial displacement field 

can be readily evaluated from any of the following expressions: 
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Elasto-plastic opening convergence can be subsequently determined by substituting r=a in the 

above expressions. 

   The displacement field is then given by: 
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and the opening closure by: 
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the closure of a opening under external load application in a linear elastic material is: 
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The total opening convergence normalized to the elastic convergence is then: 
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which is independent of the deformation properties of the elastic material. 

 

5.2.4.Influence of bolting on strength parameters 

   The equilibrium of an element near an unsupported opening in accordance with theory of 

elasticity (Figure 12) can be represented by: 

0=
−

+
rdr

d rr θσσσ

   (51) 

   Combination of the linear Mohr-Coulomb linear failure criterion, the above equilibrium 

equation leads to: 

 

Figure 12. Equibliriım consideration for bolt-rock mass intearction 
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=
−

+
)1(

(52) 

on the other hand, in a bolted element (Figure12 ), the equilibrium condition for this segment 

of longitudinal length SL can be represented by the following equation, if the additional radial 

force due to shear stresses along the borehole is assumed to be given by  

drdT λσπ θ=∆    (78) 
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the bolt density parameters is defined by: 

TLL SS
ad

S
d λπ
θ
λπβ ==    (80) 

as we see the bolt density parameter is dimensionless. It reflects the relative density of bolts 

with respect to the opening perimeter and takes into consideration the sheer stresses on the 

bolt surface, which oppose the rock mass displacements near the opening wall. 

   The magnitude of β can be increased by: 

1. Decreasing the bolt spacing 

2. Increasing the bolt surface area 

3. Increasing the roughness of bolt surface 

   In practice, the value of β varies between 0.05 and 0.20 for most cases. In a few case 

histories such at the Enasan Opening, analyzed by Indraratna(1987) very high values for β (in 

excess of 0.4)were reached by very intensive bolting patterns. The friction factor, λ, is 

analogous to the coefficient of friction. It relates the mean mobilized shaer stress to the stress 

applied normal to the bolt surface. The magnitude of λ for smooth rebars falls in the range tan 

(φg/2)< λ<tan (2φg/3) and for shaped rebars approaches tanφg, depending on the degree of 

adhesion (bond strength) at the bolt/grout interface. The friction angle of a hardened grout 

(cement or resin) is comparable to that of most intact rock. The ratios β/λ for many case 

histories determined by Indraratna(1990a) indicate that the β/λ varies between 0.12 and 0.41 

in a normal manner. 

   The bolt length, another important parameter for controlling displacements, is not included 

in the bolt density parameter because the effect of a bolt depends on its length relative to the 

radius of the yield zone. The shear stress distribution and, hence, the location of the neutral 

point are directly related to the bolt length, the extent of the plastic zone and the strength 



 29

reduction in this zone. As will be shown later, the extent of the yield zone and the opening 

wall displacements can be effectively reduced by increasing the bolt length. 

 

5.2.5. Concept of equivalent strength parameters 

   Equations 52 and 79 describe the equilibrium condition of the unsupported and reinforced 

segments, respectively. Both equations contain the same algebraic structure if the terms m (1+ 

β) and σcr(1+ β) are replaced by the equivalent parameters m* and σcr
*,respectively. Equation 

79 for the bolted composite can then be simplified to: 

rr
m

dr
d crrr *)1( σσσ

=
−

+
∗

   (81) 

Where 

)1( β+=∗ mm     and  )1( βσσ +=∗
crcr

 

grouted bolts create a zone of improved, reinforced rock in the region defined by the pick-up 

length of the bolts. Within this zone, the friction angle and the uniaxial compressive strength 

of the rock mass are increased. Therefore the degree of stabilization around the opening wall 

is a function of the bolt density parameter, β. Hoek and Brown (1980) had recognized the 

increase in apparent strength parameters due to fully grouted bolts but have not presented a 

theoretical model. 

   It should be noted that unlike equivalent friction angle φ*, no expression defining the 

equivalent cohesion was considered. Some criticizes arose for this constitutive model due to 

that deficiency (Oreste and Peila, 1996). 

 

5.2.6.Concept of equivalent plastic zone 

   Grouted bolts have the effect of improving the weakened or loosened zone by increasing the 

apparent strength. The extent of the plastic zone is directly related to this rock mass properties 

and any improvement of the rock strength must reduce the extent of the zone of overstressed 

rock, if the bolts are installed soon after excavation close to the face. Consequently, the plastic 

zone of a bolted opening is smaller than that of an unsupported opening in the same ground. 

This is termed the “ Equivalent Plastic Zone” because it is the yield zone in a material of 

improved properties simulating a behavior equivalent to the bolted rock mass. A reduction of 

the apparent plastic zone in turn curtails opening wall displacement. The extent of the plastic 

zone is influenced by the material parameters φ and σc and is independent of the elastic 

parameters E and ν. Indraratna’s solution does not consider an increased stiffness of the 
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reinforced rock because the elastic component of strain or displacement is assumed to be 

small in comparison to the plastic component. The following factors directly affect the radius 

R* of the equivalent plastic zone: 

 Bolt density parameter,β 

 Bolt length,L 

 Radius of the neutral point of the bolt,ρ 

 Opening radius,a 

 Fiels stress,Po 

   It should be noted that the above parameter are only with respect of rock-bolt. It is further 

interesting to say that four of five parameter were also recognized by empirical approach 

under taken by Ünal(1983).  

   In comparison with Ünal’s rock load height concept, it can be deduced here that rock load 

height is similar to plastic (yielding) zone. Opening span, the effect of field stress particularly 

horizontal stress, bolt pattern are considered as the main parameters affecting the failure 

(overstressed) zone of an opening in both approaches. Another convincing argument arising 

here is the role of rock mass classification systems such as MRMR. Why Indraratna does not 

consider the one of the rock mass classification systems is that the plastic zone and equivalent 

plastic zone are calculated based on analytical expression (theory of elasticity) whereas Ünal’s 

empirical solution takes into account the rock mass classification ratings. 

   The determination of the equivalent plastic zone EPZ radius, R*, must be divided into three 

categories depending on the location of the interface between the elastic rock and the 

equivalent plastic zone relative to the neutral point and the bolt length (Figure13): 

I. R*<ρ<(a+L)    minimal yielding 

II. ρ<R*<(a+L)   major yielding 

III. R*>(a+L)   excessive yielding 

 

Solutions of the Equivalent Plastic Zone Radius 

Category (І)       R*<ρ<(a+L)    minimal yielding 

   The condition of minimal yielding occurs either at relatively low field stress or when the 

bolts are excessively long. in these situations, the extent of the plastic zone is confined within 

the pick-up length of the bolt and four distinct zone can be identified by the location of the 

plastic zone relative to the neutral point and the bolt ends. 

  A. Zone 1: a<r<R*   r is point of interest 
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Figure 13. Categorazation of the extent of yielding (after Intraratna, 1987) 
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   In this region of the pick-up length, the ground displacements toward the opening are 

resisted by positive shear stress. The equivalent stress field in this zone is   represented by: 
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∗∗ += cr sm σσσθ    (83) 

where 

)1( β+=∗ mm    and   )1( βσσ +=∗
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B. Zone 2:  R*<r<ρ 

   This part of the elastic zone is confined to the pick-up length of the bolt. The elatic stress 

fields in this zone are given by: 

 
22*

1 







+




















−=

∗

r
R

r
R

rRor σσσ    (84) 

22*

1 







−




















−=

∗

r
R

r
R

rRo σσσθ    (8) 

 the peak tangential stress, σθR, at the elasto-plastic interface for s=1 is given by the following 

condition: 
∗∗ += crRR m σσσθ  

the radial stress at the elasto-plastic boundary σrR is derived by substituting r=R* in  the latter 

equations: 
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C. Zone 2:  ρ <r<(a+L) 

   This part of the elastic zone is contained within the anchor length of the bolt. The radial and 

tangential stress fields are given by: 
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D. Zone 4: r > (a+L) 

   This outermost elastic region, beyond the bolt, is in virgin rock and the elastic stresses are 

given by: 
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the radial distance to the neutral point is given by Equation 50  ,as discussed earlier. At the 

elastic-plastic interface, the assumption of continuity of radial stress gives 
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the solution of above equation provides the normalized radius of the equivalent  plastic zone 

(EPZ): 
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It is obvious that as β tends to zero, the parameters m* and σc
* approach m and σc. In other 

word, above equation becomes identical to that of unsupported case as derived by Kaiser et 

al(1985) i.e. 
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   As discussed above, for the category (І) the solutions are solved, in the same way solutions 

for the categories (ΙΙ) and (ІІІ) are extractable. The condition of major yielding, ρ<R*<(a+L), 

occurs when the extent of the plastic zone has propagated beyond the neutral point. In this 

situation, the plastic zone itself is divided by the neutral point into two zones. Consequently, 

only the plastic zone region that falls within the pick-up length of the bolt is effectively 

stabilized by the positive shear stresses. The equivalent plastic zone radius is then given by: 
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ḿ=m(1-β)   and  σ΄c=σc(1-β)   (96d) 

   The condition of excessive yielding, R*>(a+L), occurs either due to large in-situ stress in 

relatively weak rock or as a result of inadequate bolt length. In this situation, the bolt is 

completely embedded in the yielded rock and no anchorage is provided from the outer elastic 

zone. The radius of the equivalent plastic zone is now given by: 
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   The strain and displacement fields are determined by the application of Hooke’s laws, strain 

compatibility, flow rule and strain-displacement relationships as discussed earlier. 

5.2.7. Discussion of behavior predicted by the analytical model 

   Evidence to support the analytical predictions has been obtained by laboratory simulations 

of a model opening; accordingly, results in  much interesting finding as briefly given 

here(Indraratna 1987): 

1. It was concluded that as the bolt density parameter β increases, the radial and 

tangential stress fields approach those predicted for non-yielding, elastic rock, and the 

radius of equivalent plastic zone (R*) approaches the opening radius. Further away 

from opening, the stress field tends toward the far-field stress. 

2. For the strain field, as the bolt density parameter β increases, the radial and tangential 

strains approach the elastic solution. The pronounced reduction of the total tangential 

strain(εθt) inside the overstressed zone at the elastic-plastic boundary indicates 

strengthening of the yielding material by the bolts. 

3. Regarding displacement induced, as the distance from the opening wall increases, the 

effect of bolting on the radial displacement diminishes rapidly and the far field 

conditions are approached. It is evident that the maximum decrease in strains and 

radial displacements occurs at the opening wall. Hence, the opening wall convergence 

can be considered as the most appropriate parameter for a displacement controlled 

design approach. 

 

5.2.8. Influence of grouted bolts on opening wall stability 

   The radial strains and displacements at the opening wall are the most fundamental quantities 

required to evaluate the stability of a opening. In the field they are not only feasible to 

measure but are also generally reliable. The radial strain and convergence of the reinforced 

opening wall can be predicted from the following equations, after the magnitude of R* has 

been determined for the respective categories I to III: 
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the derivation of the above expressions is based on the assumption that both radial 

displacement and radial stresses are continuous across the elasto-plastic boundaries, regardless 

of the field stress magnitude. In addition, the post peak parameters α and s are assumed to be 

constant irrespective of the bolt density; whereas, the elastic parameters G and ν are 

considered to be characteristic of the original intact material prior to yielding. 

 

5.2.9. Use of displacement control approach for design 

   The dimensionless ratios R*/a and u*/a are both directly dependent on the bolt density 

parameter β and normalized bolt length (L/a).  If β is kept constant for a smaller opening 

excavated in the same homogeneous and isotropic rock., the ratio u*/a is not affected if the 

bolt length is also reduced proportionately(i.e. scaled reduction). However, if the bolt length 

remains unchanged for a smaller opening radius, the quantity u*/a decreases for the same β. In 

contrast, for a larger opening the bolt length must be increased accordingly in order to 

maintain the same u*/a ratio for a given β. 

   The above predictions may not be accurate for a opening excavated in a predominantly 

jointed medium. This is because; a larger opening intersects a greater number of 

discontinuities, thereby adopting a behavior equivalent to that of an excavation in a weaker 

medium.  

   The applicability of this philosophy was examined by Indraratna 1987 in details. By 

knowing the properties of rock mass around the opening and post peak parameters of rock α 

and s, one is able to calculate the extent of the yielding zone and predicted convergence of the 

unsupported opening as discussed earlier. The next step is to use a bolt pattern with respect to 

bolt density parameter. Since the bolt length isn’t included into bolt density parameter, we can 

assess the stability based on either bolt density effect or bolt length effect. No matter which 
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treatment is applied, the extent of yielding zone as well as total opening wall convergence 

decrease. 

5.2.10. Normalized convergence ratio 

   The convergence of a reinforced opening can be presented by the dimensionless ratio ua
*/ua, 

where ua
*and ua are the total convergence of the reinforced and unsupported opening 

respectively at the same stress level. The total opening convergence includes both the elastic 

and plastic displacements. For a given field stress, ua
* is less than ua but it approaches ua when 

the bolt density (β) or the bolt length (L) tends to zero. 

   The normalized convergence ratio decreases as the intensity of bolting increases. It obtains a 

minimum value when ua
* tends to ue, the elastic portion of the total convergence. The latter 

condition may be approached at every intensive bolt densities such as β>.30, which is not 

only rare in practice but is economically unattractive. The convergence ratio is particularly 

useful in the design of grouted and swellex bolts, since it reflects the reduction in convergence 

that can be achieved by a given bolt pattern. 

   An important characteristic of the convergence ratio is that it is insensitive to moderate 

changes of the deformation and strength parameters. For instance, a change in Young’s 

modulus affects both ua* and ua equally, hence the ratio ua
*/ua remains unaltered. The latter 

characteristic of the normalized convergence ratio makes its use in design even more reliable, 

since the variation of in-situ geotechnical parameters can be tolerated without any significant 

error. 

 

5.2.11. Concept of bolt effectiveness 

In order to assess the efficiency of bolting, the opening convergence is selected as the 

appropriate evaluation criterion. Obviously, optimal efficiency of a bolt system corresponds to 

minimal opening convergence that can be achieved within economic limitations. In reality, the 

total convergence of a yielding, reinforced opening wall (ua
*) must be less than of an 

unsupported opening (ua), but more than the convergence predicted by the linear elastic 

solution (ue). Considering these limitations the bolt effectiveness (i) for a given field stress is 

best defined as: 
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   The bolt effectiveness (i) is sensitive to moderate changes in uniaxial compressive strength 

and the friction angle. Therefore, its use as a design tool is justified only if the geotechnical 

properties of ground are accurately determined. 

 

5.2.12. Relationship between the analytical solution and rock mass classification 

approach (empirical design) 

   No analytical solution, according to engineering judgment, is valid on the condition that it is 

verified by empirical approaches. Rock mass classification is generally recognized the most 

suitable way of designing the reinforcement system in a rational manner. 

   Amongst rock mass classification systems, the Bieniawski’s (RMR System) seems to be 

applicable to fully grouted bolts in all types of rock. The deficiency of the Q-system for 

defining an appropriate reinforcement system in the case of using the grouted bolt has been 

discussed earlier .Unfortunately, Bieniawski didn’t offer any extra support design guideline 

apart from that has been published in the literature.  

   According to Bieniawski’s guidelines (1974, 1979, 1989), the recommended bolt lengths (L) 

and grid spacing (SL×ST) for different rock classes are tabulated in the first three columns of 

Table2. The ratio β/λ for these rock classes can be deduced from this information and is 

tabulated in the forth column. The magnitude of λ may be estimated from the effective bond 

angle of the bolt/grout interface to determine β. The corresponding bolts density parameters 

for an assumed λ=0.5 are given in the last column of Table 2. Several interesting aspects 

evolve from this table. The bolt densities (β) recommended for poor to very-poor rock are 

relatively insensitive to rock quality changes and the advocated range of β for some rock 

classes (RMR< 40) is very wide.   

   According to surveyed conducted, for RMR<20, bolt densities seems to be too lower. Based 

on results obtained from experiences, as the bolt density increases, so the spacing decreases. 

Hence a reduction of the bolt spacing for a weakest rock class would provide a sufficiently 

high magnitude for β to curtail displacements more effectively than by increasing the bolt 

length. This finding is so important in that in the weak rock mass RMR<40, for instance at the 

weak, stratified, clay bearing rock masses perfectly characterized by Ünal (1996), decreasing 

the bolts spacing is far more effective than increasing the bolts length. This evidence was also 

supported by Laubscher and Taylor who proposed bolt spacing less than 0.75m for poor 

ground at RMR<30. This bolt spacing corresponds to a β-value of about 0.28 for λ=0.5, and 



 39

seems to be in good agreement with the densities proposed by Intraratna (1987,1990) for 

effective convergence reduction. 

   In my opinion, on the basis of results and observations, I concluded that the RMR system 

may not provide a sufficiently sensitive guide to properly designed grouted bolts, even all 

types of fictitious bolt, in weak, yielding rock mass. For classes of poor rock (RMR<40), a 

rational design method for grouted bolts should be based on an analytical approach, which 

provides a sound basis for effective convergence control. However, for reinforcement system 

guidelines fro RMR<40, it is wise to classify the rock mass based upon Modified Rock Mass 

Rating (M-RMR) developed by Ünal (1996) and then in order to better characterize the rock 

mass in terms of strength parameters, the M-RMR class of rock mass can be switched into 

GSI (Geological Strength Index), leading ultimately to a new concept of empirical 

reinforcement design, which satisfies analytical methods. 

 
Table 2. Recommended bolt densities according to  

Geomechanics Classification (RMR)  (after Intraratna & Kaiser, 1990) 
Rock class                                      L                 SL and  ST                                                                        β 

    RMR              Condition            (m)                    (m)                      β/λ                       (at 

λ=0.5 ) 

     81-100                  Very good                         no support                                                    0.00 

       61-80                      Good               2-3                     2.5                      0.05                        0.10 

       41-60                       Fair                3-4                 1.5 – 2.0             0.08 – 0.14               0.04-0.07 

       21-40                       Poor               4-5                 1.0 – 1.5             0.14 – 0.31               0.07 – 0.16 

        <20                     Very poor          5-6                 1.0 – 1.5             0.14  - 0.31               0.07 – 0.16 

      

 

5.2.13. Discussion and verification of the analytical model 

   The development of load on a grouted bolt has the effect of providing additional 

confinement (increased radial stress) in the yielded zone. As a result the tangential stress at the 

same point is increased more than proportionately. The original failure envelope is thereby 

shifted upwards, indicating an improvement of the apparent strength (σc, φ), as represented by 

the Mohr-Coulomb diagram in Figure 14. This enables the rock mass to behave as a stronger 

material leading to a corresponding reduction in opening convergence at a given field stress. 

   Owing to the fact that fully grouted bolts effectively improve the apparent strength of the 

rock mass, the behavior of the reinforced opening can be ideally represented by a shift of the 
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ground convergence curve. The vertical axis of the ground convergence curve (Figure 15) 

represents the fictitious radial stress (σs) required at the opening boundary to prevent further 

convergence. The horizontal axis represents the opening convergence at the opening wall (ua). 

The ground convergence curves are identical at every point along the opening boundary for 

the condition of axisymmetric yielding under hydrostatic field stress. 

 

 

Figure 14. Effect of grouted bolts on 

 failure envelope (after Intraratna, 1987,1990) 

 
 

 

Figure 15. Effect of grouted bolts on  

ground convergence curve ((after Intraratna, 1987,1990) 

   The response of an unsupported opening in yielding rock is given by curve A. curve B 

represents an imaginary ground convergence curve of the opening, where bolts would have 

been installed before any displacements could have occurred. In reality, an initial 
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displacement (uo) of the opening wall occurs prior to the installation and subsequent activation 

of the grouted bolts. The magnitude of convergence after bolting is dependent on the apparent 

stiffness of the bolt/ground composite, and is reflected by a shift of the ground convergence 

curve from curve A to curve C, as a result of the reduced yield zone. In contrast to fully 

grouted bolts, pre-tensioned mechanical bolts provide direct radial pressure (active support) 

against the opening wall, but do not become an integral part of the deforming rock mass. 

Consequently, their performance is best represented by a support confinement curve with a 

specific stiffness and its interaction with the original ground convergence curve. 

 
PART B: NON-LINEAR CONSTITUTIVE MODEL 

USING ASSOCIATED FLOW RULE AND 

EMPIRICAL HOEK & BRROWN YIELD CONDITION 

 

   In this part, constitutive models associated with passive rock-bolt systems are discussed 

based on non-linear Hoek and Brown failure criterion using associated flow rule. Unlike 

previous constitutive model, this model has been highly subjected to argue due to its 

complexity. Since the Ph.D. study is concerned with passive rock-bolt systems (grouted and 

swellex bolts) the Hoek and Brown solution (1980) corresponding to pre-stressed rock-bolt 

design won’t be disputed here. Hoek and Brown (1980) introduced a solution containing 

ground reaction and available support curves (convergence-confinement method) for a 

circular opening at a hydrostatic field stress in a homogeneous, isotopic rock mass based on 

theory of elasticity. They took their non-linear failure criterion, associated flow rule, and a 

material behavior model prosecuting elastic-brittle –perfectly plastic into account. Based on 

their solution, alternatively recommended support systems could be utilized in a variety of 

rock mass conditions. Despite their sophisticated solution, no analytical model for passive 

rock-bolt system and its interaction with rock mass could have been presented. However, 

Hoek and Brown only pointed out that the support action of grouted rock-bolts would arise 

from internal reinforcement of the rock mass in much the same way as the presence of 

reinforcing steel acts in reinforced concrete. Up to that time, no direct evidence was available 

on the strength of reinforced rock masses. 

   Oreste and Peila (1995.1996,1997,2003) introduced a design of passive rock-bolt systems 

based on convergence-confinement concept. In my opinion, there have been some 

inconveniences and uncertainties in their solution; however, the model they used is so 

complex. 
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 5.3.ORESTE & PEILA CONSTITUTIVE MODEL  

   Peila and Oreste (1995) presented a new convergence-confinement approach able to model a 

reinforced rock mass zone surrounding an opening zone with new improved properties. 

   A circular opening subjected to an undisturbed hydrostatic stress field, under plane strain 

conditions has been modeled (Figure 16). The rock mass has been considered homogeneous, 

isotropic, elasto-plastic with a strain-softening material behavior and non-linear Hoek and 

Brown yield condition both peak and residual parameters of failure criterion i.e. both m and s 

decrease from the peak value to the residual ones linearly with the tangential strain.  

    It is at this point so interesting that for the first time, the strain-softening model was chosen 

for modeling the reinforced rock mass around 

an opening. Brown et al (1983), however, in an 

outstanding article presented a new analytical 

solution for a unsupported circular opening 

following the previous solution of Hoek and 

Brown (1980) modeling the rock mass in the 

case of both elastic-brittle plastic and elastic- 

strain softening. The problem has been solved 

with the usual concepts applied in the 

converegnce-cofinement approach using a 

finite difference scheme (due to the 

mathematical complexity of the describing 

equation) because the differential equations 

that describe the rock mass stress-strain field, with and without bolts, have been easily solved 

by finite difference method (FDM). The mathematical solution follows the step-wise sequence 

of calculations for an elastic-strain, softening-plastic model in which post-peak dilatancy 

occurs at a lower rate with major principle strain in the constant strength plastic zone than in 

the strain softening zone. The bolts are considered to be fully bonded to the rock and with 

linear-elastic behavior. In this work it has been shown that small variations of the rock mass 

mechanical properties (the peak and residual strength parameters, the elastic modulus and the 

strain softening parameters) in the reinforced zone with respect to natural rock mass, influence 

the opening deformations and the stresses induced in the rock mass. 

Figure 16. Assumed opening geometry (after 
Brady & Beown, 1985). 
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   This model is capable of taking the effect of the distance from the bolted section to the 

opening face, the effect of increasing the lateral spacing between bolts (ST in Fig.17) and the 

influence of different bolt end plate response 

curves into consideration. 

    When the bolts are installed, a certain 

convergence of the natural rock mass has 

already developed (with respect to undisturbed 

condition). This is modeled by reducing the 

fictitious internal pressure from the Po value to a 

percentage of this value (Panet and Guenot, 

1982), according to the distance from the 

opening face; a further reduction of the internal 

pressure (simulation of the excavation process 

(FLAC 4, 2000)) induces tensile forces in the 

bolt which are applied to the rock mass through 

the bolt lateral surface and the nut end-plate. Indraratna & Kaiser  (1990) had mentioned that 

relatively small displacements (4-5 mm) were normally sufficient to mobilize axial bolt 

tension by shear stress transmission from the rock to the bolt surface. The force applied by the 

bolt to the opening surface is strictly dependent on the nut end-plate stress-strain behavior. 

The condition of ideal tie, which means zero flexibility of the nut end-plate, allows the bolt to 

transfer the maximum force to the opening surface. In reality, however, even a lower bound 

condition where zero force is applied to opening perimeter is not taken to account and an 

intermediate condition is presented. The main steps of the analysis are as follows: 

a. Computation of the convergence-confinement curve without bolts and stresses and 

strains for an internal pressure Pin value between Po and the internal pressure of bolt 

installation (Pinst) [Pinst<Pin<Po]. 

b. Computation of the convergence-confinement curve of a fictitious opening with a 

radius equal to the real opening radius plus the bolt length [rfict=rin+Lb]; 

c. Computation of the real stress-strain field influenced by the presence of the reinforcing 

elements starting from the values computed in step (b), for each point of the 

convergence-confinement curve of the fictitious opening (displacement and internal 

pressure), using a finite difference procedure. The value of the pressure and radial 

Figure 17. Geometry of the  axsisymmetric 
problem (after Oreste & Peila,1996). 
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displacement obtained at the opening radius are the real values of the bolted 

convergence-confinement curve. 

   The final convergence-confinement curve is therefore obtained by considering the values 

computed in step (a) for an internal pressure which varies from Po to Pinst, and the curve 

computed in step (c) fro an internal pressure which varies from Pinst to zero.[0<Pin<Pint]. 

 

5.3.1.Rock mass behavior model  

The strength criterion adopted is that proposed by Hoek  & Brown (1980,2002): 
a
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where mb is a reduced value of the material constant mi and is given by: 
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s and a are constants for the rock mass given by the following relationships:  
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   D is a factor which depends upon the degree of disturbance to which the rock mass has been 

subjected by blast damage and stress relaxation. It varies from 0 for undisturbed in-situ rock 

masses to 1 fro very disturbed rock masses. Guidelines for the selection of D are shown 

elsewhere (Hoek et al. 2002). 

   It is assumed that the residual strength criterion is given the same analytical formulation, 

where the parameters m and s refer to the residual values mr and sr. 

   A strain softening behavior is assumed in the plastic zone (Brown et al.1983). The f and h 

parameters describe the magnitude of the plastic behavior after the peak condition (ratio 

between the radial and tangential plastic strain both in the residual and softening branch of the 

stress-strain curve), while α defines the width of the softening zone (see Figure 2). 

Experimental data are required to determine these parameters (Brown et al.1983, Peila & 

Oreste, 1995). The appropriate rock mass properties can be obtained by back-analysis of field 

data and are based on the designer experience. 

   Peila and Oreste (1985) presented an analytical expression of f using associated flue rule of 

the theory of plasticity corresponding to Hoek and Brown Failure Criterion: 
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   Brown, Bray, Ladanyi, and Hoek (1983) presented, as earlier mentioned, an analytical 

solution for a circular opening in the case of strain-softening behavior of material which 

allows for the non-linearly empirical Hoek & Brown failure criterion. In that case, the solution 

must account for the possible existence of three different zones around the opening: (1) An 

elastic zone remote from the opening; (2) an intermediate plastic zone in which the stresses 

and strains fall on the strain-softening portion of Fig 2; and (3) an inner plastic zone in which 

stresses are limited by the residual strength of the rock mass (see Figure 18). For non-

axisymmetric problems, comparable closed-form or iterative finite difference solutions cannot 

be obtained, and a numerical method of computation, such as the finite element method 

(FEM), must be used (Brady & Brown, 1985). 

 

Figure 18. Plastic zone divided into thinannuli for finite difference solution (stepwise geometrical 
discretization) (after Brady & Brown,1985). 

 
   According to Figure 19, the zones around an opening can be defined based on the properties 

of the rock mass. An unsupported opening, Pi=0, constitutes two major rock mass around 

itself namely, broken (plastic or yielding) zone and elastic (natural) zone while a reinforced 

opening is embedded within reinforced rock mass and elastic zone. What is by far important 

to recognize is that how much the reinforced rock mass accounts for yielding zone. Intraratna 

(1987) regarded the reinforced rock mass surrounded within yielding zone as equivalent 

plastic zone (EPZ). The connection between those zones is of great importance in order to 

better understand the behavior of reinforced rock mass. 
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   With a assumption that a linear elastic stress-

strain behavior occurs before failure and use the 

equilibrium equation (Equ. 51) and boundary 

conditions u=0, εr=0, εθ=0, σr= 0 at r=∞ and σr= 

σre (σre is the radial stress at failure) at the plastic-

elastic interface (re), stress and strain in the elastic 

region will be: 
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at r=re the radial and tangential stresses (minor and maximum principal stresses) apart from 

having to satisfy the elasticity theory, must also satisfy the adopted failure criterion: 
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where σθ(brk) is the tangential stress at failure. 

 Equation 111 may be rewritten, using equations 106 and 107:  
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from which, after some simplifications, one obtains: 
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It is therefore possible to define the strains at the elastic-plastic interface, from equations 108, 

109 and 113: 

Figure 19. studid problem scheme ( after 
Peila & Oreste, 1995). 
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   The mathematical formulation proposed by Brown et al. (1983) has been utilized in order to 

describe the stress-strain behavior of the rock mass in the plastic (strain-softening) zone, It is 

assumed that both m and s decrease from peak values to the residual value mr and sr, linearly 

with the tangential strain: 
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where m(j+1) and s(j+1) are the m and s values in the softening zone at a point where the 

tangential strain is εθ(j+1). 

   On this basis, the value of re, the position of which has not yet been defined, is obtained 

with a numerical solution based on the finite difference method. The computational procedure 

involves the discretization of the plastic zone in annular rings starting from the unknown 

elastic-plastic interface towards the opening, by incrementing the tangential strain value εθ(j) 

for every calculation step and calculating the corresponding radial strain. Since, from the 

above equations, at r=re, the radial stress, mb and s (peak value) are known, and by assuming 

that the tangential and radial strain are continuous the following can be written: 
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while for ring (j+1), which lies between the radii r(j+1) and r(j), the strains at the boundaries are 

defined by: 
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where: λ(j+1) and λ(j): ratio between the radius r(j+1) or r(j), and the unknown value of re; the 

tangential strain at r(j+1), εθ(j+1), is imposed by assuming an arbitrary incremental value at r(j) is 

known. 

The stresses at the boundaries, for ring (j+1), are defined by: 
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where,mmed(j+1),smed(j+1): average strength parameters. After some substitution equations 125, 

126,and 128 allow one to define the radial and tangential stresses at the linear surface of ring 

(j+1): 
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   By carrying out the iteration from the unknown value of the plastic radius and by calculating 

the value of λ(j+1) for each iteration, the plastic radius, for a defined internal pressure Pin, 

results to be: 
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where n is the total number of iteration. The problem is solved computing σr(j+1), ur(j+1) and 

re(j+1) for each calculating ring. 

 

5.3.2. Reinforced rock mass and grouted bolt behavior simulation 

   When the reinforcing elements are to be accounted for, the equilibrium equation, as shown 

in Figure 20, must be rewritten as: 
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where: 

SL= longitudinal bolt spacing along the opening axis; 

STo= transversal bolt spacing on the opening perimeter; 

r = distance between the considered point in the rock mass and the opening axis; 

T = axial tensile force in the bolt at a distance r, from the opening axis; 

 

   Assuming that the principal stress directions are 

not affected by the bolts, and that there is no 

adherence loss between the bolt and the rock mass, 

the axial force in the bolt (T) depends upon the 

radial strain in the rock mass, which is developed 

following bolt installation: 

)( rrbb AET εε −−=    (131) 

where εr is the radial strain in the rock mass at a 

distance r from the opening axis, εr is the radial strain in the rock mass at the same distance r 

when the bolt is installed, Eb is the Young’s modulus of the bolt and Ab is the bolt transverse 

section. 

   The numerical calculation procedure used for the simulation of the plastic natural rock mass, 

described in the previous paragraphs, is now applied both in the elastic and plastic conditions. 

Starting from the known values of the convergence-confinement curve of the fictitious 

opening (at rfic) the calculation rings develop towards the opening perimeter until rock failure 

occurs. Equations 106 to 110 are now substituted by equations 133 to 136, written in a finite 

Figure 20. Stresses in the bolt and in the 
rock mass(after Oreste &Peila,199). 
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difference form, for a distance r(j+1) from the opening axis. r(j+1) is defined by equation 132  

and depends on the incremental value of the tangential strain. 
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   The over-lined variables in equations 132 to 136 refer to the stress-strain field in the rock-

mass at the moment of the bolt installation, i.e. Pin=Pinst.. 
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   The plastic radius in the reinforced rock mass (for internal pressures lower than the fictitious 

pressure Pinst is now known before the simulation of the plastic zone is started (i.e. the radius 

for which the tangential stress defined in the elastic field by equation 133 is greater than the 

tangential stress defined by the strength peak condition). 

   The axisymmetric equilibrium with bolts (Equ. 130) is expressed in a finite difference form 

for a generic ring by below equation: 
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and from the Hoek and Brown failure criterion: 
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one can obtain: 
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where  

[ ])1()(2
1

++= jja mmm     and       [ ])1()(2
1

++= jja sss . 

   For the reinforced rock mass equation 126   is substituted by equation 139. Assuming the 

same geometrical discretization used for the solution of the stress-strain field in the natural 

rock mass for an internal pressure equal to Pinst, equation 127 is substituted by equation 140. 
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having assumed the same previously described discretization of the natural plastic rock mass, 

the r(j+1) value is known for each calculation ring. 

   From the radial and tangential strains continuity it is then possible to rewrite equation 125 

where the radial and tangential strains at the inner surface of the considered annulus 

(respectively, εr(j+1) and εθ(j+1)) are unknown. Since an increment of the tangential strain, in the 

plastic zone, produces an increment of the radial strain [equation (141a) in the plastic residual 

zone and equation (141b) in the softening zone], equation (125) can be solved as follows: 
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where f and g are the parameters in the plastic zone. When the radial strain εr(j+1) at r(j+1) is 

known, it is possible to calculate the axial force in the bolt T(j+1) (Equ. 131)  , the radial stress 

in the plastic reinforced rock mass (Equ.140  ) and the corresponding tangential stress. 

Therefore, the problem is completely solved. 

 

6. CONCLUSIONS 

   In an effort to present a new constitutive model of rock-support interaction analysis, a 

comprehensive literature survey on that topic was conducted. To date, four constitutive model 

of rock-support interaction theory have been developed based on stress-strain behavior and 

yield condition disciplines. While Stille’s approach and Indraratna & Kaiser’s analysis are in 

conjunction with elastic-brittle plastic stress-strain relationship and linear Mohr-Coulomb 

failure Criterion, Hoek & Brown and Oreste & Prila analyses are governed by non-linearly 

empirical failure criterion. The rock-support solution undertaken by Hoek & Brown for 

prestressed rock bolts in the case of elastic-brittle-plastic model of material is disregarded in 

this study. For the first time, in order to develop an accurate and reliable roc-support 

interaction analysis, the elastic-strain softening behavior of rock taken into account by Oreste 

& peila, however, there are some uncertainties and inconveniences in their theory due to its 

complexity of mathematical operations. 
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   The author suggests enhancing the Indraratna & Kaiser’s solution because their model is 

simple and back analysis of some physical models and two-site application showed a good 

agreement between measured data and their solution. The following deficiencies of  

Indraratna & Kaiser’s solution were recognized while comparing with the other models: 

- Linear yielding criterion 

- Elastic-brittle-plastic stress-strain law 

- Same elastic modulus in the reinforced zone and in the natural rock mass 

- Only the strength of rock mass is reduced to the residual value regardless of 

considering the internal friction angle of rock mass. 

   If Indraratna & Kaiser’s constitutive model is mingled and modified with strain-softening 

behavior of material as well as non-linear yield condition, a competitively precise model with 

the minimum assumptions would be achieved. 
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